First of all, thank you for using AC70T series crane drives.

VEICHI Electric is committed to producing safe, efficient and reliable hoisting-specific products. Combined with many years of experience in the hoisting industry, AC70T series products feature excellent control performance and functions since they integrate special functions such as brake control, stable hoisting, constant power, zero-speed hovering, anti-shake luffing, brake torque detection, etc., which are mainly used for driving and controlling hoisting, slewing and traveling mechanisms in hoisting equipment.

This manual describes how to correctly use AC70T series products, and provides users with relevant precautions such as install method, parameter setting, operation and fault diagnosis.

In order to use this AC drive correctly, please read this manual carefully before using it. And if there are any doubts about the contents of this manual, please consult our technical personnel.

VEICHI is always committed to product innovation and technological breakthrough, and providing the best products and solutions to meet the application needs of hoisting. Content changes caused by continuous updates and upgrades of products are subject to no further notice.

—I—

Catalog

1 General	1
1.1 Safety Precaution	1
1.2 Technical Specifications	5
1.3 Product Features	7
2 Before Use	8
2.1 Unpacking Inspection	
2.2 Nameplate	8
2.3 Technical Data	9
2 Product Dimensions	10
2.5 Electrical Installation	
2.6 Standard Wiring	
2.7 Main Circuit Terminals	
2.8 Control Circuit Terminal	
3 Basic Keyboard Operation	22
3.1 Safety Precaution	
3.2 Keyboard Layout and Function Description	
3.3 Keyboard Indicator Description	
3.4 Cross Reference Table	
3.5 Basic Keyboard Operation	
4 Debugging Guide	29
4.1 Unlocking	
4.2 Trial Operation Guide	
4.3 Checklist Before Power-up	
4.4 Checklist After Power-up	
4.5 Motor Parameter Auto-tuning	
4.5.1 Auto-tuning Mode	
4.5.2 Auto-tuning Steps	
4.6 Motor Control Mode	
4.7 Start/Stop Command	
4.8 Multi-segment Speed Setting	

4.9 Analog Input Terminal Characteristics	35
4.10 Analog Output Terminal Characteristics	
5 Specific Functions	
5.1 Brake Control	
5.2 Brake Failure Protection	
5.2.1 Function Description	
5.2.2 Notice	
5.2.3 Relevant Parameters	
5.3 Brake Torque Detection	
5.3.1 Activation Method	
5.3.2 Working Process	
5.3.3 Relevant Parameters	
5.4 Constant Power Control	
5.5 Stable Hoisting	
5.5.1 Function Description	
5.5.2 Relevant Parameters	
5.6 Anti-snag Control	41
5.6.1 Working Process	41
5.6.2 Relevant Parameters	41
5.7 Anti-swing Luffing	
5.7.1 Function Description	
5.7.2 Operation Guide	
5.7.3 Relevant Parameters	
5.8 Ant-Speed (Slow Positioning)	44
5.9 Slewing Control	44
5.9.1 Without Eddy Control	
5.9.2 With Eddy Control	45
5.10 Eddy Control	46
5.10.1 Step 1: Set Eddy Control Mode	47
5.10.2 Step 2: Set Eddy Control Polarity	47
5.10.3 Step 3: Adjust Eddy Control	
5.11 Slewing Flexible Control	
5.12 Slewing-Specific Acceleration/Deceleration	50

6 Parameter List	
6.1 Group F0: Basic Settings	
6.2 Group F1: Operation Control	
6.3 Group F2: Switch Terminal	
6.4 Group F3: Analog Terminal	
6.5 Group F4: System Parameters	71
6.6 Group F5: Motor Parameters	
6.7 Group F6: Motor Vector Control	
6.8 Group F8: Motor SVC1 Parameters	
6.9 Group FA: Protection and Fault Parameters	
6.10 Group FB: Step Acceleration/Deceleration	
6.11 Group FC: Multi-Segment Speed	
6.12 Group FD: Communication Control	
6.13: Group FE: Crane Function Parameters	
6.14 Group FF: Crane-Specific Parameter Group 2	
7 Terminal Function	
8 Monitoring Parameter	
9 Troubleshooting	
9.1 Fault Type	
9.2 Fault Details	
9.3 Fault Alarm	
10 Accessory Selection	
10.1 Braking Resistor Selection	
10.2 PG Card Selection	
Appendix I: RS485 Communication	149
Appendix II: EMC Compliance	159

1 General

Thank you for purchasing AC70T series high-performance crane drive designed and manufactured by Suzhou VEICHI Electric Co, Ltd. This manual describes how to use this product for benefits. Please read it carefully before using the product (installation, wiring, operation, maintenance, inspection, etc.).

1.1 Safety Precaution

Please use this product only after the safety precautions described in this manual are fully understood to ensure personal and device safety.

• Signs and Meanings

The following signs are used in this manual to highlight the safety key points. Failure to observe these points may result in damages to this product and the associated system, or even personal injuries.

D anger	DANGER: Incorrect operation may result in death or major safety incidents.
Warning	DANGER: Incorrect operation may result in death or major safety incidents.
Caution	CAUTION: Incorrect operation may result in minor injuries.
Note	NOTE: Incorrect operation may result in damage to the product and the associated system.

• Operator

This product must be installed, wired, operated and maintained by trained professionals. "Trained professionals," as referenced in this manual, are operators of this product who have received specialized training in its installation, wiring, operation, and maintenance, enabling them to appropriately handle emergencies that may occur during use.

Safety Guide

The safety rules and warning signs presented for safety are measures taken to prevent personal injuries and damages to the product and the associated system. Please carefully read this manual before using and adhere to the safety guidelines and warnings, which are

-1-

• General

	• This product carries a dangerous voltage and controls a potentially dangerous motion
	mechanism. Non-compliance with the regulations or failure to operate in accordance
	with this manual may result in personal injury or death and damage to the product
	and the associated system.
	• This product must be operated by trained professionals familiar with the manual's
Warning	safety and operation guidelines. Proper use and maintenance are vital for safety and
	stable performance.
	• Do not perform wiring work while the power is on, as there is a risk of death by electric
	shock. Before performing wiring, inspection, maintenance, etc., disconnect the
	power supply to all associated equipment and make sure that the DC voltage in the
	main circuit has dropped to a safe level for 5 minutes.
	• Prevent children and the public from contacting or approaching this product.
	• This product may only be used for purposes specified by the manufacturer, and shall
A Caution	not be used without authorization in special areas related to emergency, rescue,
	marine, medical, aviation, and nuclear facilities.
	• Unauthorized modifications or using of spare and accessory parts not sold or
	recommended by the manufacturer of this product may cause malfunctions.
	• Ensure this manual is provided directly to the actual user, who must read it thoroughly
Note	prior to use.
	• Ensure that you have thoroughly read and comprehended the associated safety
	guidelines and warning notices before installing and adjusting the AC drive.
• Storage and Tra	nsportation

Correct transportation, storage, installation, as well as careful operation and maintenance, for the safe operation of the AC drive is essential. Ensure that the drive is not subjected to shocks and vibrations during transportation and storage, and also ensure that it is stored in places that is dry, free of corrosive gases and conductive dust, and its ambient temperature is lower than 60°C.

• Installation and Wiring

Warning	• This product must be operated only by trained professionals.
	• All power, motor, and control cables must be securely connected, and the grounding
	terminal reliably earthed with a resistance below 10Ω .
	• Cut off the power supply to all connected equipment before accessing the AC drive
	panel to verify the main circuit DC voltage is at a safe level, and wait 5 minutes
	before proceeding with any operations.

• Human static electricity can damage sensitive internal components. Follow specified
electrostatic discharge (ESD) precautions to prevent damage to the drive before any
work.
• Output voltage of the drive is in a pulse waveform, so if there are devices such as
capacitors for power factor improvement or varistors for lightning protection
installed on the output side, be sure to remove or move them to the input side.
• Do not add switching devices such as circuit breakers and contactors to the output side
of the drive (if a switching device must be connected to the output side, the output
current of the drive is must be guaranteed to be zero when it is switched on).

• Operation

Warning	 The AC drive operates at high voltage, resulting in hazardous voltage in specific product components. Faults in control equipment can lead to serious accidents or injuries, identifying as potential hazards; hence, supplemental measures like external current limiters, mechanical guards, etc., are necessary to ensure safety. Ensure the motor persentator in the AC drive match the actual usage specifications for
	• Ensure the motor parameters in the AC drive match the actual usage specifications for proper motor overload protection.

• Maintenance

Warning	• Maintenance of this product should be performed only by Suzhou VEICHI Electric Technology Co., Ltd's service department, its authorized service center, or its trained
	and authorized professionals, who must be well-versed in this manual's safety warnings and instructions.
	Any defective devices must be replaced timely.
	• Disconnect power and confirm the main DC voltage drop to the safe level before maintenance, then wait 5 minutes before proceeding with any operations.

• Dismantling and Disposal

Caution	 The AC drive's packaging box is reusable; please retain it for future needs or return it to the manufacturer. Disassembled metal devices are recyclable. Certain components, like electrolytic capacitors, can harm the environment; please dispose of them following environmental regulations.
---------	--

1.2 Technical Specifications

Item		Specification	
	Voltage, frequency	Three-phase 380V 50Hz/60Hz	
Power Input	Allowable fluctuation	Voltage: 320V~440V;voltage imbalance rate: <3%; frequency: ±5% Distortion rate meets IEC61800-2 requirements	
	Power factor	≥ 0.94 (with DC reactor)	
	AC drive efficiency	≥96%	
	Output voltage	Output under rated conditions: 3-phase, 0V~input voltage, deviation	
D O I I	Output current	Please refer to the rated specifications.	
Power Output	Output frequency range	0Hz~320Hz	
	Output frequency	$\pm 0.5\%$ of the max. frequency	
	Control mode	0: SVC1 3: SVC2 4: FVC	
	Motor type	Asynchronous motor	
	Carrier frequency	0.6kHz~15.0kHz	
	Steady-status speed	SVC: ≤1% rated synchronous speed	
Main Control	Starting torque	SVC: 180% of the motor rated torque at 0.5Hz	
Performance	Frequency accuracy	Digit setting: Max. speed × ±0.01% Analog setting: Max. frequency × ±0.2%	
	Frequency resolution	Digit setting: 0.01Hz; Analog setting: Max. frequency × 0.05%	
	Speed fluctuation	± 2% (SVC) ± 1% (FVC)	
	Overload	150% rated current for 1min, 180% rated current for 10s, 200%	
	Brake	100% brake power for long term operation, 120% brake power for	
Basic	DC brake	Starting frequency: 0.00Hz~60.00Hz Brake time: 0.0s~60.0s Brake current: 0.0%~150.0% rated current	
	Accel./decel. curve	2 types: linear, S-curve 4 time sets; unit: 0.01s; max. duration: 650.00s	
Function	Auto voltage regulation	The output voltage can be automatically kept constant when the grid voltage fluctuates.	
	Auto current limit	Auto current limit during operation to prevent frequent tripping from over-current fault	
	Instantaneous power	Uninterrupted operation through bus voltage control in case of	

	Frequency setting channel	Set via keyboard numbers, keyboard potentiometer, analog voltage terminal VS1, VS2, pulse current terminal AS, communication and Set via voltage terminal VS1, VS2, current terminal AS, Set via operation panel, external terminals and communicationStart, stop, forward and reverse, jog, multi-segment speed, free stop, reset, acceleration/deceleration time, frequency channel selection, 2-channel RO, 1-channel collector output,0V~10V output, 4mA~20mA output, frequency pulse output		
	Feedback input channel			
	Command channel			
	Input command signal			
	External output signal			
Brake control Built-in brake control for crane			crane	
	Keyboard display	Dual-line 4-digit	Monitor 2 AC drive status parameters	
	Parameter copy	The function code information of the AC drive can be uploaded and		
Display	Status monitoring	Output frequency, given frequency, output current, I/O voltage, motor speed, module temperature, I/O terminal status, etc.		
	Fault alarm	Overvoltage, undervoltage, overcurrent, short-circuit, phase loss, overload, overheat, stall, damaged data, current fault status, and fault history		
	Installation site	Indoor, at an altitude of n	ot more than 1000m, non-corrosive gas and	
	Temperature, humidity	-10°C~+40°C (wall-mounted), 20%RH~90%RH (non-condensing)		
	Vibration	<0.5G below 20Hz		
Environment	Storage temperature	-25°C~+65°C		
	Installation method	Wall-mounted		
	IP	IP20		
	Cooling	Forced air-cooled		
Protection	Overvoltage, undervoltage	Overvoltage, undervoltage, current limit, overcurrent, overload, overheat, stall, data protection		

1.3 Product Features

Function	Description			
	Upon detecting motor shaft rotation while in standby mode, the			
	AC drive automatically engages zero-speed servo control to			
Brake Failure Protection	maintain the heavy load's current position and sounds an alarm			
	for the operator to lower the hook, thus providing optimal			
	equipment operation safety.			
	During tower crane hoisting, if the AC drive senses the wire			
Stable Heisting	rope transitioning from slack to taut, it initiates low-speed			
Stable Holsting	hoisting, followed by acceleration once the load stabilizes, to			
	prevent jib "nodding" caused by the rope's overextension.			
Snog Drovention	If the main hook is hung up by an external object during			
Shag r revention	hoisting, the AC drive will emit a warning or fault signal.			
	The speed limit is automatically calculated according to the			
Constant Power	current load during hoisting, achieving "high speed for light			
	load and low speed for heavy load".			
Abnormal Torque	Torque is monitored during the whole process, and when an			
nonorma rorque	abnormal torque output is detected, the output is blocked			
Prevention	immediately for an emergency stop.			
	Low-speed operation is stable without "stuttering", and gear			
Stable Slewing	shifting and jib operation function smoothly without			
	"stopping".			
A	An anti-swing algorithm based on rope length ensures no			
Anti-swing Lutting	swinging of heavy loads after shutdown.			
	Implement special brake logic control via brake release			
Crane Brake Control	frequency, brake release current, brake release time, and brake			
	apply time to ensure system safety and reliability.			

2 Before Use

2.1 Unpacking Inspection

When receiving your order, please inspect the exterior packaging for damage, and open it after confirming that it is complete and undamaged, scratches, or dirt (damages caused during transportation are not covered by VEICHI's warranty). If the product received is damaged during transportation, please contact us or the transportation company immediately.

After confirming that the product received is complete and undamaged, please doublecheck that the model number of the received drive is the same as what you have ordered. Please see the model number on the "MODEL" column of the nameplate on the side of the AC drive. If the model does not match your order, please contact the agent from whom you purchased the product or our sales department.

2.2 Nameplate

2.3 Technical Data

Model	Motor power	Rated input voltage	Rated current
AC70T-T3-R75-B	0.75kW		2.3A
AC70T-T3-1R5-B	1.5kW		3.7A
AC70T-T3-2R2-B	2.2kW		5A
AC70T-T3-004-B	4kW		10A
AC70T-T3-5R5-B	5.5kW		13A
AC70T-T3-7R5-B	7.5kW		17A
AC70T-T3-011-B	11kW		25A
AC70T-T3-015-B	15kW		32A
AC70T-T3-018-B	18kW		38A
АС70Т-Т3-022-В	22kW		45A
АС70Т-ТЗ-030-В-2	30kW	30kW The show 200MA C	
АС70Т-ТЗ-037-В-2	37kW	Three-phase 580 VAC	75A
AC70T-T3-045-B-2	45kW		90A
AC70T-T3-045-B	45kW		90A
АС70Т-ТЗ-055-В-	55kW		110A
АС70Т-ТЗ-075-В	75kW		150A
АС70Т-Т3-090-В	90kW		180A
AC70T-T3-110	110kW		210A
AC70T-T3-132	132kW		250A
AC70T-T3-160	160kW		310A
AC70T-T3-185	185kW		340A
AC70T-T3-200	200kW		380A

2 Product Dimensions

		Dim	ensions		Hole	site	
Drive model	W	н	D	D1	W1	H1	Aperture
Drive model AC70T-T3-R75-B	W	Н	D	D1	W1	H1	Aperture
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B	W 122	H 182	D 154.5	D1 145	W1 112	H1 171	Aperture ф5
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B	W 122	H 182	D 154.5	D1 145	W1 112	H1 171	Aperture ф5
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B	W 122	H 182	D 154.5	D1 145	W1 112	H1 171	Aperture φ5
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B AC70T-T3-5R5-B	W 122 159	н 182 246	D 154.5 157.5	D1 145 148	W1 112 147.2	H1 171 236	Aperture φ5 φ5.5
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B AC70T-T3-5R5-B AC70T-T3-7R5-B	W 122 159	H 182 246 291	D 154.5 157.5 167.5	D1 145 148	W1 112 147.2	H1 171 236 275	Aperture φ5 φ5.5 φ7
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B AC70T-T3-5R5-B AC70T-T3-7R5-B AC70T-T3-011-B	W 122 159 195	н 182 246 291	D 154.5 157.5 167.5	D1 145 148 158	W1 112 147.2 179	H1 171 236 275	Aperture φ5 φ5.5 φ7
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B AC70T-T3-5R5-B AC70T-T3-7R5-B AC70T-T3-011-B AC70T-T3-015-B	W 122 159 195	н 182 246 291	D 154.5 157.5 167.5	D1 145 148 158	W1 112 147.2 179	H1 171 236 275	Aperture φ5 φ5.5 φ7
Drive model AC70T-T3-R75-B AC70T-T3-1R5-B AC70T-T3-2R2-B AC70T-T3-004-B AC70T-T3-SR5-B AC70T-T3-7R5-B AC70T-T3-011-B AC70T-T3-015-B AC70T-T3-018-B	W 122 159 195 230	Н 182 246 291 330	D 154.5 157.5 167.5 200	D1 145 148 158 190	W1 112 147.2 179 208	H1 171 236 275 315	Aperture φ5 φ5.5 φ7 φ7

2.5 Electrical Installation

This section describes essential safety measures and requirements to guarantee the product's safe operation, AC drive performance and reliability.

• Precautions

	• The AC drive must be reliably grounded during operation to prevent potential injury,
	fatalities, and ensure reliable equipment function.
	• This product must be installed, wired by trained professionals to ensure safe operation
Warning	of the AC drive.
	• Do not carry out work with the power supply on, as there is a risk of electric shock and
	death.
	• Please cut off power to all related equipment, confirm the main circuit DC voltage is at
	safe level, and wait 5 minutes before proceeding with any operations.
	• Keep AC drive control cables, power supply cables, and motor connection cables
A Caution	separate, avoiding shared cable ducts or trays.
	• This product should be used only for the purpose specified by the manufacturer. For
	other special applications, please contact our sales department.
	• Do not use high-voltage insulation test tools on the AC drive and their connected cables.
	• When the AC drive and peripheral equipment (filters, reactors, etc.) need the insulation
Note	test it should first use a 500 V megohm-meter to measure its insulation resistance to
	ground, and the insulation resistance should not be less than 4 M Ω .
	-

2.6 Standard Wiring

Legend: 1. Symbol ③ represents the main circuit terminal. 2. Symbol O represents the control circuit terminal.

Note:

- 1. Ensure the shorting jumper between the P1 and (+) terminal is removed when installing the DC reactor.
- 2. The multi-function input terminals (X1~X7/PUL) support NPN or PNP transistor signals, while a bias voltage can be from the AC drive's internal power (+24V terminal) or an external supply (PLC terminal). In the default illustration above, setting the switch to +24 indicates a short between "+24V" and "PLC".
- Analog monitoring output is dedicated for frequency meter ammeter, voltmeter and other indication meters, and cannot be used for feedback control or other controls.
- 4. The control panel adopts AC80CC0N-A1.1 or higher versions.

Multi-function terminal wiring

• NPN wiring

Figure 2-1: NPN Wiring for DI Signals

• PNP wiring

Figure 2-2: PNP Wiring for DI Signals

Wiring for DO signals

Control of external relay with drive's internal 24V supply

Control of external relay with external 24V supply

Figure 2-3: Wiring for DO Signals

Wiring for AO signals

Figure 2-4: Wiring for AO Signals

Wiring for pulse input signals

2.7 Main Circuit Terminals

• Main circuit terminal arrangement and definition

S		
Т		
U		
V	Drive output terminal	For connecting motor.
W		
÷	Grounding	Grounding terminal, with the grounding resistance <
Е	orounding	10Ω.

2.8 Control Circuit Terminal

• Control circuit terminal arrangement

	AS CND	Current analog	1. Input current: DC 0mA~20mA
	AS-GND	input	2. Input impedance: 500Ω
	VS CND	Voltage analog	1. Input voltage: DC 0V~10V
	v S-GND	input	2. Input impedance: 75kΩ
Analog Input			1. Range: DC 0V~10V/0mA~20mA, up to DIP
		Voltage or current	switch S2 on the control panel.
	AI-GND	AI	2. Voltage impedance: $75k\Omega$
			3. Current impedance: 500Ω
	V1 DLC	Multi-function	
	AI-PLC	terminal input 1	
	V2 DLC	Multi-function	
	A2-PLC	terminal input 2	
	V2 DLC	Multi-function	
	X3-PLC	terminal input 3	Optocoupler isolation, compatible with bipolar
Divited Invest	VA DI C	Multi-function	input.
Digital Input	X4-PLC	terminal input 4	1. Input impedance: 4.4kΩ
	N5 DLC	Multi-function	2. Voltage at level input: 10V~30V
	X3-PLC	terminal input 5	
	V(DLC	Multi-function	
	A0-PLC	terminal input 6	
	N7 DL C	Multi-function	
	X7-PLC		
	AO1 GND	A01	Use DIP switch S1 to select voltage or current
			output.
	A01-0ND		1.Voltage range: DC 0V~10V
			2. Current range: DC 0mA~20mA
			Use DIP switch S5 to select voltage, current or
Analog Output			high-speed pulse output
7 maiog Output			1. Voltage range: DC 0V~10V
	AO2-GND	AO2	2. Current range: DC 0mA~20mA
	1102 0112	1102	3. Pulse range: 0kHz~100kHz
			For pulse output, set parameter [F3.53] to tens-
			bit=3, and use DIP switch S3 to select between
			active pulse output or open collector output
			Optocoupler isolated, open collector output
Digital Output	Y-COM	DO1	1. Voltage range: DC 0V~30V
			2. Curren range: DC 0mA~50mA
	TA1 TC1	Normally open	
	IAI-ICI	terminal 1	
	TD1 TC1	Normally closed	Contract drive connection
Rolay Output	IDI-IUI	terminal 1	240 XA C 2 A
Relay Output	TA 2 TC2	Normally open	240 VAC, 5A 20VDC 5A
	TA2-TC2	terminal 2	JUVDC, JA
	TB2-TC2	Normally closed	
		terminal 2	
Communication	A 1	Communication	DC405
Terminal	A+	terminal A+	K5485 communication interface.

	B-	Communication terminal B-	Use DIP switch S4 to decide the connection of the RS485 communication to a 120 Ω terminal resistor.
--	----	------------------------------	--

• Auxiliary terminal output capability

Terminal	Definition	Max. output
+10V	10V auxiliary power output, forming a	50mA
AO1/ AO2	Analog monitoring output, forming a circuit with GND.	The max. output is 2mA for the signal of frequency and voltage type.
+24V	24V auxiliary power output, forming a	100mA
Y	Open collector output, action object	DC24V/50mA
TA1/TB1-/TC1 TA2/ TB2-TC2	Passive contact output, action object can be set in the software.	3A/240VAC 5A/30VDC

• Switch function diagram and description

Pin	Position	Description	
	K1	AO1: 0mA~20mA or 4mA~20mA	
81	K2	AO1: 0V~10V	
	K3	AI: 0mA~20mA or 4mA~20mA	
82	K4	AI 0V~10V	
62	K5	For AO2=0.0kHz~100.0kHz (J1 is ON), turn AO2 to open-collector output	
83	K6	For AO2=0.0kHz~100.0kHz (J1 is ON), turn AO2 to active output	
64	K7	RS485 communication is connected to 120Ω terminal resistor	
84	K8	RS48 is disconnected from 120Ω terminal resistor	
	J1	AO2 port: 0.0kHz~100.0kHz frequency (PWM frequency pulse output)	
S5	J2	AO2 port: 0mA~20mA or 4mA~20mA current	
J3		0V~10V voltage output	

	+24V	+24V shorted to PLC
S6 PLC		PLC receives external power input
	COM	PLC shorted to COM
К9		Disconnect from GND and PE chassis discharge circuit.
S7	K10	Connect to GND and PE chassis discharge circuit.

3 Basic Keyboard Operation

3.1 Safety Precaution

Danger	• Do not perform wiring work with the power supply on, as there is a risk of electric shock;
Warning	 Do not operate the AC drive with the casing open as there is a risk of electric shock; Ensure that the motor casing is grounded, otherwise there is a risk of electric shock or fire; Please cut off power to all related equipment before wiring, then confirm the main circuit DC voltage is at safe level, and wait 5 minutes before proceeding with any operation; Non-professionals shall not perform any maintenance, inspection, or part replacement work; Do not remove the AC drive casing with the power supply on, as there is a risk of electric shock; Do not touch the AC drive printed board with the power supply on, as there is a risk of electric shock; Ensure all main circuit cables are connected securely, otherwise the loose ones may lead to overheating or even fire; Reconfirm the supply voltage before power-up, and incorrect voltage can lead to drive malfunction, damage, or even fire; Do not mount the AC drive on or near flammable materials, keep the area clear of debris before power-up.
Note	 Follow specified electrostatic discharge (ESD) precautions during operation to prevent damage to the AC drive. Do not disconnect or connect the motor while the AC drive is running; only do so when the drive is powered down so as to avoid damage. Use a twisted pair shielded cable for control wiring and ground the shield to the AC drive's grounding terminal to prevent abnormal operation. Non-professionals shall not perform any operation, installation, wiring, debugging, maintenance and repair work; Unauthorized modifications, disassembly, or repairs can damage the AC drive and such damages are not covered by the warranty.

3.2 Keyboard Layout and Function Description

-23-

JOG REV	Reverse/ Jog	F4.07 can define the function of the key. As a "reverse key" (REV), it makes the AC drive to operate in reverse direction, and the function indicator of the key is off. As a "Jog" key, it makes the AC drive jog, and the function indicator of the key is on.
STOP RESET	Stop/ Reset	When the command channel is set to keyboard control, press the key to stop the drive; expand its effective range through the parameter [F4.08]; press the key to reset the drive in fault status. (It will not be reset when the fault is not eliminated).

3.3 Keyboard Indicator Description

Nam	e	Status	Meaning	
	Hz	Flash	The displayed number is the given frequency.	
Unit indicator	Hz	ON	The displayed number is the output frequency.	
	А	ON	The displayed number is the actual output current.	
	V	On	The displayed number is the input voltage.	
	V	Flash	The displayed number is the output voltage.	
	S	ON	The time unit is seconds.	
	S	Flash	The time unit is milliseconds, minutes or hours.	
	RPM	On	The displayed 4-numbers is the motor speed.	
	FWD	ON	AC drive is in forward operation.	
Status indicator	FWD	Flash	AC drive is in reverse operation.	
	FWD	OFF	AC drive is in the shutdown status.	
Function	REV/JOG	ON	As a JOG key.	
indicator	REV/JOG	OFF	As a REV key.	

3.4 Cross Reference Table

Character	Display	Character	Display	Character	Display
0	8	С	E	0	8
1	1	D	8	Р	8
2	8	Е	B	Q	8
3	8	F	8	R	8
4	8	G	8	S	8
5	S	Н	8	Т	
6	8	Ι	9	U	
7	8	J		V	
8	8	K		W	89
9	8	L	S	Х	No display
А	8	М		Y	8
В	8	Ν	8	Z	No display

Table 3-1: Cross Reference Table

3.5 Basic Keyboard Operation

Parameter initialization

Set F0.19=1 to initialize the parameters. See the details as below:

Figure 3-1: Parameters Initialization

• Command channel

Here are the command channels which can be set via [F0.02]: 0: Keyboard control; 1: Terminal control; 2: RS485 communication control; 3: Optional cards. The following is an example by setting F0.02=1 (terminal control):

Table 3-2: Command Channel

The two-line terminal control model in the figure is only one method of terminal control, please see other methods in Chapter 9 for details.

• Frequency setting channel

There are multiple channels to set frequency, please see those options in Chapter 9 for details.

The following is an example by setting F0.03=1 (via keyboard potentiometer):

Table 3-3: Frequency Setting Channel

• Acceleration/deceleration time selection

There are 4 groups of the accel./decel. time. Unless specified, acceleration/deceleration time

1 is set by default. The following is an example by setting F0.14=8.0 (acceleration time 1).

Figure 3-4: Acceleration/Deceleration Time Selection

• Monitoring parameter check

Figure 3-5: Monitoring Parameter Check

4 Debugging Guide

4.1 Unlocking

AC70T provides a password protection function, which requires entering the password to unlock before parameter setting. The steps are as follows:

1. Dual-line keyboard unlocking

Press the "PRG" menu key to display "CodE" on the keyboard's first line. Use the up and down keys to enter the user password on the second line, then press "SET" to unlock.

2. Single-line keyboard unlocking

Press "PRG" key to display "CodE" on the first line of the keyboard, then press "Set" to see the number flash. Use the up and down keys to enter the correct password, and press "SET" again to unlock.

4.2 Trial Operation Guide

Figure 4-1 Trial Operation Guide

4.3 Checklist Before Power-up

Item	Content	
	Check whether the power supply voltage is correct.	
Power supply voltage	Check whether the R/S/T/N power terminals are wired reliably.	
	Check whether the drive and motor are reliably grounded.	
Wiring between AC drive output	Check whether the AC drive output U/V/W and motor are securely	
and motor	wired.	
AC drive control circuit wiring	g Check whether the drive's control circuit connections with other	
	devices are secure.	

Please check the following items before power-up.

4.4 Checklist After Power-up

The display of normal operating panel after power-up is shown below:

Status	Display	Description		
Normal	15.00	Keyboard displays xxHz by default.		
Faulty	E.EF	The AC drive stops and the error code is displayed.		

4.5 Motor Parameter Auto-tuning

4.5.1 Auto-tuning Mode

Mode	Application	Effect	Setting
Dynamic auto-tuning	For scenarios where the motor can be disconnected from the load	Excellent	F5.20=1
Static auto-tuning	For all scenarios	Excellent	F5.20=2
Rapid static auto-tuning	For scenarios requiring mediocre control	Good	F5.20=3
--------------------------	--	------	---------
	precision		

4.5.2 Auto-tuning Steps

- 1. Ensure high/low voltage wiring is correct and safety protection for the motor or a safe operating environment.
- 2. Enter the correct F5.01 to F5.06 parameters according to the motor nameplate.

Note:

For one drive controlling multiple motors:

F5.02= slewing motor numbers*motor rated power;

F5.06= slewing motor numbers*motor rated current.

3. Set the auto-tuning mode.

For hoisting industry, generally use F5.20=2 (static auto-tuning), and press "SET" to confirm. The keyboard displays:

n		(Th	m	—
¥.	EX.	-		
ų.	\square			.

Then press the green key "FWD" and see:

(Ph		n Ph	
	H	$\left \right $	\sim
	\square	9.	

For successful auto-tuning, see the frequency on the panel; otherwise see fault alarm E.TE1, and please troubleshoot via FA.39 [Fault Diagnostic Information] for details.

4.6 Motor Control Mode

Code	Definition	Application
	0: SVC1	For hoisting or travel mechanisms
	3: SVC2	For slewing mechanism
F0.00	4: FVC	For high-precision speed control (an encoder must be added to the motor side, and the AC must be equipped with a PG card of the same type as the encoder).

4.7 Start/Stop Command

Code	Name	Definition
F0.02	Command Channel	0: Keyboard control 1: Terminal control 2: RS485 communication control

0: Keyboard control

Controlled by RUN and STOP on the panel, it takes effect upon pressing.

Via keyboard operations: Set F0.02=0 for keyboard control. Press RUN to start the AC drive

and the RUN indicator is on; press STOP to shutdown the drive and then the indicator is off.

1: Terminal control

Via multi-function terminals: Set F0.02=1 for terminal control.

Parameters F2.00~F2.06 are for terminal control, see "7 Output Terminal Function" for details.

Example: To set X1 for forward operation, set F2.00 to 1, short X1 to COM on the terminal strip, and disconnect to stop.

Example: To set X2 for reverse operation, set F2.00 to 2, short X2 to COM on the terminal strip, and disconnect to stop.

Note: Do not short to run terminal commands at the same time, see the wiring diagram in "2.8 Control Circuit Terminal".

2: Communication control

Via writing response command from the 485 communication port: Set F0.02=1 for

communication control, see "Appendix I: RS485 Communication".

Communication control is achieved by host computer control, connecting RS485's serial ports to A and B terminals, and needs to set FD.00~FD.06.

Example: Communication command forward operation: 0106 30 01 00 01 16 CA

4.8 Multi-segment Speed Setting

Set the multi-segment speed by the X terminal function, with terminal number 16, 17, 18, 19 correspond to multi-segment speed 1, 2, 3, 4 respectively. The wiring follows the diagram provided, with the target frequency set according to the multi-segment speed table.

Terminal Wiring Schematic

With FC.00 set to 10.00Hz and the X3 terminal connected, it corresponds to multi-segment speed terminal 1, and now the given frequency is 10.00Hz.

With FC.05 set to 20.00Hz and the X4, X5 terminals connected, it corresponds to multi-

segment speed terminal 2, 3 respectively, and now the given frequency is 20.00Hz.

Multi-segment	speed contro	l has prio	ritv after	iogging.	and its	setting t	able is as	s follows:
				J - 0007				

Multi-segment speed terminal	Multi-segment speed terminal	Multi-segment speed terminal	Multi-segment speed terminal	Terminal Speed
OFF	OFF	OFF	ON	1X [FC.00]
OFF	OFF	ON	OFF	2X [FC.01]
OFF	OFF	ON	ON	3X [FC.02]
OFF	ON	OFF	OFF	4X [FC.03]
OFF	ON	OFF	ON	5X [FC.04]
OFF	ON	ON	OFF	6X [FC.05]
OFF	ON	ON	ON	7X [FC.06]
ON	OFF	OFF	OFF	8X [FC.07]
ON	OFF	OFF	ON	9X [FC.08]
ON	OFF	ON	OFF	10X [FC.09]
ON	OFF	ON	ON	11X [FC.10]
ON	ON	OFF	OFF	12X [FC.11]
ON	ON	OFF	ON	13X [FC.12]
ON	ON	ON	OFF	14X [FC.13]
ON	ON	ON	ON	15X [FC.14]

4.9 Analog Input Terminal Characteristics

The AC70T series drive supports the 3-channel analog input as AI, VS and AS on the control board respectively, as shown in the following table:

Name	Characteristics		
AT	DIP switch to K3: receive 0mA~20mA and 4mA~20mA signal		
AI	DIP switch to K4: receive 0VDC~10VDC signal		
AS	Receive 0mA~20mA and 4mA~20mA signal		
VS	Receive 0V~5V and 0VDC~10VDC signal		

The AC drive adopts external voltage and current signals as frequency sources to set and modify given frequency via AI, VS, and AS terminals. The actual given or feedback which corresponds to current or voltage can be set through Group F3; analogs of VS, AI, and AS can be read via C-16, C-17, and C-18 respectively.

4.10 Analog Output Terminal Characteristics

The AC70T series drive supports the 2-channel analog output as AO1 and AO2 on the control board respectively, as shown in the following table:

Name	Characteristics
	DIP switch to K1: output 0mA~20mA and 4mA~20mA signal
AO1-GND	DIP switch to K2: output 0V~10V
	DIP switch to J1: output frequency of 0.0kHz~50.0kHz
AO2-GND	DIP switch to J2: output current of 0mA~20mA or 4mA~20mA
	DIP switch to J3: output voltage of 0V~10V

AO1 and AO2 analogically control the AC drive's internal parameters which can be selected through F3.54 and F3.55, and modified before output through F3.54 and F3.55.

5 Specific Functions

5.1 Brake Control

The AC70T series drive has a built-in brake control function, which requires to set one DO to 33 (brake control). The control timing is as follows:

Brake Apply Logic

The braking mechanism is applied when unpowered and releases after power-up. Brake control function realized by brake release frequency, current, delay, and apply time can prevent slipping and ensure system safety. See related parameters as table below:

Code	Name	Description	Default
FF.01	Brake Control	Ones-bit: Release torque condition 0: Frequency reached 1: Frequency and current arrives at the same time 2: Output torque arrival (valid in vector control mode) Tens-bit: Release torque direction 0: Same as operation 1: Forward Hundreds-bit: Apply torque direction 0: Same as operation 1: Forward Thousands-bit: Reserved	1001
FF.02	Command Control	Ones-bit: Reverse running command control 0: OFF If a reverse running command is received during operation, the AC drive will stop outputting following the normal shutdown procedures, then start the reverse operation. 1: ON If a reverse running command is received during operation, the AC drive starts reversing after frequency zero-crossing, without outputting any brake apply commands.	0010

FF.03	Command Interval	After completing the braking and the time set in this parameter, the drive will respond to a running command received during braking and shutdown. Range: 0.00s~10.00s	0.30s
FF.04	Brake Release Current Coefficient	0.0%~100.0%	20.0%
FF.05	Zero-Crossing Jumping Frequency	0.00Hz~10.00Hz	1.00Hz
FF.06	Forward Brake Release Frequency	0.00Hz~10.00Hz	2.00Hz
FF.07	Forward Brake Apply Frequency	0.00Hz~10.00Hz	2.00Hz
FF.08	Reverse Brake Release Frequency	0.00Hz~10.00Hz	2.00Hz
FF.09	Reverse Brake Apply Frequency	0.00Hz~10.00Hz	2.00Hz
FF.10	Pre-delay of Forward Brake Release	0.00s~1.00s	0.20s
FF.11	Post-delay of Forward Brake Release	0.00s~1.00s	0.10s
FF.12	Pre-delay of Forward Brake Apply	0.00s~1.00s	0.0s
FF.13	Post-delay of Forward Brake Apply	0.00s~1.00s	0.50s
FF.14	Pre-delay of Reverse Brake Release	0.00s~1.00s	0.20s
FF.15	Post-delay of Reverse Brake Release	0.00s~1.00s	0.10s
FF.16	Pre-delay of Reverse Brake Apply	0.00s~1.00s	0.0s
FF.17	Post-delay of Reverse Brake Apply	0.00s~1.00s	0.30s

5.2 Brake Failure Protection

5.2.1 Function Description

1. This function is valid in FVC (closed-loop vector control) mode (F0.00=4);

2. With the function is ON (FF.60=1) and the AC drive stops operation, if the motor axis frequency fed back by the encoder reaches FF.61 [Brake Failure Protection Detection Threshold] and lasts over FF.63 [Brake Failure Filter Time], the AC drive automatically enters zero speed operation, with the heavy load suspended, and then stops again upon the zero servo operation reaches FF.62 [Brake Failure Protection Apply Time];

3. When the function is ON, the panel will display alarm A.078, the status can be output through DO terminal, assigned terminal function number 35 (Brake failure protection in progress);

4. When the function is ON, the AC drive responds to the UP/DW commands, with frequency limits set by FF.64 and FF.65.

5.2.2 Notice

1. Brake failure protection activation and holding need the AC drive powered on and fault-free, with all other electrical mechanisms functioning normally;

-37-

As long as the above conditions are met, protection can be activated without limit of times;
 Without forced air-cooling on the hoist motor, take motor temperature rise into FF.62 [Brake Failure Protection Hold Time] for zero speed operation.

5.2.3 Relevant Parameters

Code	Name	Description	Default
FF.60	Brake Failure Protection	0: OFF 1: ON	1
FF.61	Brake Failure Protection Threshold	0.00Hz~5.00Hz	0.50Hz
FF.62	Brake Failure Protection Hold Time	0.0s~3000.0s	60.0s
FF.63	Brake Failure Filter Time	0.000s~2.000s	0.050s
FF.64	Brake Failure Upward Frequency Limit	0.00Hz~100.00Hz	0.0Hz
FF.65	Brake Failure Downward Frequency Limit	0.00Hz~100.00Hz	50.00Hz

5.3 Brake Torque Detection

This function actively checks whether the brake torque is normal, applicable in FVC (closed loop vector control) mode.

5.3.1 Activation Method

Set FF.55=1 to enable the brake torque detection function;

Via DI terminals (X1 \sim X7) with the corresponding parameter (F2.00 \sim F2.06) set to 82 (Brake torque detection), the function is enabled when the terminal is switched from OFF to ON.

5.3.2 Working Process

When the AC drive stops operation, it adopts 5.00Hz as the target frequency, and automatically operates with a toque limit by FF.57 [Brake Torque Detection Torque]. Consider a complete detection cycle as 5s of forward running, 3s stopping, 5s reverse, and 3s stopping. The AC drive stops once the detection count reach FF.56 [Braking Torque Detection No.]. During this, if the encoder feedback frequency is filtered (the filter time as FF.59) and reaches FF.58 [Brake Torque Detection Frequency Threshold], the AC drive reports E.061 error. The fault can be output as a digital signal via terminal number 36 (Insufficient brake torque fault detection).

5.3.3 Relevant Parameters

Code	Name	Description	Default
F2.00~F2.06	X1~X7 terminal	82: Brake torque detection Note: One terminal defined as 82 is enough.	
FF.55	Brake Torque Detection	0: OFF 1: ON	1
FF.56	Braking Torque Detection No.	0~10	3
FF.57	Brake Torque Detection Torque	0.0%~150.0%	100.0%
FF.58	Brake Torque Detection Frequency Threshold	0.00Hz~5.00Hz	2.00Hz
FF.59	Brake Torque Detection Filter Time	0.0s~2.000s	0.200s

5.4 Constant Power Control

This control mode, known as "speed changes with load", automatically calculates the frequency limit based on load, achieving "high speed for a light load, low speed for a heavy load" to enhance hoisting mechanism efficiency. It is ideal for use without weight limiters. In this mode, the relevant parameters are as follows:

Code	Name	Description	Default
FE.82	Hoisting Control	Thousands-bit: Constant power control 0: OFF 1: ON	0
FE.83	Load Calculation Frequency	This code computes the load when the target frequency exceeds it, so as to achieve the current load torque. Range: 0.00Hz~50.00Hz	20.00Hz
FE.84	Load Calculation Time	In constant power control, it refers to the holding time of FE.83 [Load Calculation Frequency]. Range: 0.000s~3.000s	0.500s
FE.85	Light Load Torque	Define the working conditions of light load,100.0% corresponding to the rated motor torque. The frequency limit is FE.A3 when the load calculation torque is less than this value. Range: 0.0%~50.0%	15.0%
FE.A1	UP Hoisting Power Limit	Automatically calculates the frequency limit by load calculation torque, power limit (FE.A1~FE.A2) and	90.0%
FE.A2	DW Hoisting Power Limit	correction factor (FE.A4~FE.A7). Range: 0.0%~150.0%	80.0%
FE.A3	Max. Frequency in Constant Power Control	100.0% of it corresponds to the motor rated frequency. Range: 0.0%~300.0%	200.0%
FE.A4	UP Power Coefficient in FVC	Defined as a power correction coefficient, with which frequency limit increases accordingly.	100%

FE.A5	DW power coefficient in FVC	Range: 0%~120%	90%
FE.A6	UP Power Coefficient in SVC		80%
FE.A7	DW power coefficient in SVC		70%

5.5 Stable Hoisting

During tower crane hoisting, if the AC drive senses the wire rope transitioning from slack to taut, it initiates low-speed hoisting, followed by acceleration once the load stabilizes, to prevent jib "nodding" caused by the rope's overextension.

5.5.1 Function Description

1. This function is valid in FVC (closed-loop vector control) mode (F0.00.00=4);

2. Load calculation begins after UP brake release. In stable hoisting, the current load torque is calculated after drive operation at a target frequency of FE.90 [Tension Frequency] for FE.84 [Load Calculation Time]. If it is below FE.85 [Light Load Torque], tension detection is ON; otherwise, it's deemed a loaded startup and exits stable hoisting mode.

3. During tension detection, the output frequency varies according to gear frequency. Upon detecting rope tension, motor acceleration decreases and then the drive operates at FE.90 [Tension Frequency] once the decrease meets the FE.88 [Speed Change Threshold].

4. After the drive operates at tension frequency for FE.92 [Tension Frequency Holding Time], it exits stable hoisting and enter normal operation mode.

Note:

1. Tension detection is timed, so that the drive exits stable hoisting if it surpasses FE.93 [Max. Time for Tension Detection].

2. The drive exits stable hoisting mode with a deceleration or stop command during tension detection and frequency holding.

Code	Name	Description	Default
FE.82	Hoisting Control	Ones-bit: Stable hoisting 0: OFF 1: ON	0
FE.84	Load Calculation Time	In stable hoisting and anti-snag control, it refers to the holding time of FE.90 [Tension Frequency]. Range: 0.000s~3.000s	0.500s
FE.85	Light Load Torque	Define the working conditions of light load,100.0% corresponding to the rated motor torque. Used for empty hook judgment in stable hoisting and anti- snag control. Range: 0.0%~50.0%	15.0%
FE.88	Speed Change Threshold	Upon detecting rope tension, the drive operates at FE.90 [Tension Frequency] once the decrease of motor acceleration meets this value. Range: 0.00Hz~5.00Hz	2.00Hz

5.5.2 Relevant Parameters

-40-

FE.90	Tension Frequency	Used for load judgment in stable hoisting Range: 0.00Hz~10.00Hz	3.00Hz
FE.91	Max. Frequency in Stable Hoisting	Range: 0.00Hz~100.00Hz	100.00Hz
FE.92	Tension Frequency Holding Time	Holding time of tension frequency operation. Range: 0.000s~20.000s	6.000s
FE.93	Max. Time for Tension Detection	Tension detection time, after which no tension detection will be carried out. Range: 0.000s~40.000s	15.000s

5.6 Anti-snag Control

If the main hook is hung up by an external object during upward hoisting, the AC drive reports a fault or alarm.

5.6.1 Working Process

1. Load calculation begins after UP brake release. The current load torque is calculated after drive operation at a target frequency of FE.90 [Tension Frequency] for FE.84 [Load Calculation Time]. If load torque exceeds FE.85 [Light Load Torque], record the initial load; otherwise, it is considered an empty hook startup and the drive continues torque detection until it obtains the initial load.

2. During constant speed mode, if the detected torque exceeds FE.98 [Anti-snag Torque Increase] and the detection persists beyond FE.A0 [Anti-snag Detection Time], the drive will issue an alarm or fault as the tens-bit setting of FE.82 [Hoisting Control].

Code	Name	Description	Default
FE.82	Hoisting Control	Tens-bit: Anti-snag mode 0: OFF 1: Report a fault [E.059] 2: Alarm and continue running [A.079]	0
FE.84	Load Calculation Time	In stable hoisting and anti-snag control, it refers to the holding time of FE.90 [Tension Frequency]. Range: 0.0s~3.000s	0.500s
FE.85	Light Load Torque	Define the working conditions of light load,100.0% corresponding to the rated motor torque. Used for empty hook judgment in stable hoisting and anti-snag control. Range: 0.0%~50.0%	15.0%
FE.90	Tension Frequency	Used for load judgment in stable hoisting and anti- snag control. Range: 0.00Hz~10.00Hz	3.00Hz
FE.98	Anti-snag Torque Increase	0.0%~100.0%	20.0%
FE.99	Anti-snag Torque Change Rate Threshold	Consider the load stable if the torque change rate is below this value and the holding time exceeds 1200ms. Range: 0.0%~100.0%	1.5%

5.6.2 Relevant Parameters

FE.A0	Anti-snag Detection Time	When a heavy load is detected, an alarm or fault is reported after this setting. Range: 0.000s~20.000s	2.000s
-------	-----------------------------	--	--------

5.7 Anti-swing Luffing

5.7.1 Function Description

Using FVC (closed-loop vector control) (F0.00=4), the hoisting drive sends rope length calculations to the luffing drive via communication. The luffing drive then executes anti-sway control based on the real-time received rope length. See the operation guide for details.

With the fixed rope length function enabled in the luffing drive, an anti-swing effect can be achieved to some extent without adjusting the hoisting drive—simply by setting FE.68 [Fixed Rope Length] and activating the anti-swing feature. See the 4th point in the operation guide for details.

5.7.2 Operation Guide

1. Master-slave communication connection and setting

Connect hoisting drive A+ with luffing drive A+, hoisting drive B- with luffing drive B-; Hoisting drive: FD.00=0001, FD.02=0003, FD.09=000d (FD.09=000d for sending the rope length to the luffing drive) Luffing drive: FD.02=0003

2. Rope length calculation

A. Set auto-tuning mode (F5.20=2) in hoisting motor parameters;

B. Set the directions of the hoisting motor and encoder speed detection;

See Flow A and Flow B in "4.2 Trial Operation Guide" for details.

C. Identify the transmission ratio of hoisting mechanism as the following steps,

and all relevant parameters refer to those of hoisting drive:

a. Down the hook to a specified position and stop the luffing mechanism after 3 seconds of its operation to cause the hook swing. Then, observe and record the swing cycle. Start timing at the hook's front limit swing and count one cycle when it returns to that point. Record the time taken for 5 cycles (to minimize error), calculate the average to find the swing period T1; use rope length formula $L=T^{2*0.2485}$ to calculate L1 in meters (retain two decimal places), then enter L1 into FE.64 [Rope Length Estimation 1].

b. Run the hoist upward in Gear 1 for 15 seconds, stop, then luff for 3 seconds and stop to swing the hook. Calculate swing period T2 similarly, derive L2 with $L=T^{2*0.2485}$ (in meters, two decimals), and enter L2 into FE.65 [Rope Length Estimation 2].

D. Calculate the rope length equivalent to the hoist upper limit position;

The objective is to eliminate accumulated error and correct the rope length. See the method as below:

a. Connect the UP limit position to the drive multifunction input terminal (X) and write the terminal function number 89 to the corresponding parameter (F2.00~F2.06);

b. If the rope length at the upper limit is known, enter it into FE.63 [UP Limit Equivalent Rope Length] (in meters, to two decimal places). If not, raise the hoist in Gear 1 to the upper limit, luff for 3 seconds, stop to initiate swing, calculate swing period T3, derive L3 using

the rope length formula (in meters, two decimals) in the C point above, and input L3 into FE.63.

E. Check the hoisting drive's C-08 to see the real-time rope length; if no, rework is needed;

F. The luffing drive C-08 is the data sent by the master. When the communication is normal, Luffing drive C-08=Hoisting drive C-08.

Note: If the anti-swing performance gets less effective over time, operate the hoist to the upper limit for automatic rope length correction, which can enhance the anti-swing function.

3. Estimate the distance between the lifting weight and the main hook

Enter the lift weight's equivalent rope length into the luffing drive's FE.66 which refers to the distance from the weight's center of gravity to the main hook. This ensures anti-swing effectiveness and must be considered for the anti-swing luffing function.

Actual rope length for anti-swing luffing C-09=C-08+FE.66

4. Turn the anti-swing luffing switch on

Set the following parameters in the luffing drive:

Set the ones-bit of FE.67 to 1 and enable anti-swing luffing through multi-function terminal of 90;

Code	Name	Description	Default
FE.60	Min. Runtime for Hoist Transmission Ratio Identification	0.000s~30.000s	10.000s
FE.61	High Hoist Transmission Ratio Coefficient	0~65535	0
FE.62	Low Hoist Transmission Ratio Coefficient	0~65535	0
FE.63	Upper Limit Equivalent Rope Length	0.00m~25.00m	4.00m
FE.64	Rope Length Estimation 1	0.00m~300.00m	0.00m
FE.65	Rope Length Estimation 2	0.00m~300.00m	0.00m
FE.66	Lifting Weight Equivalent Rope Length	The height from the center of weight to the main hook. Range: 0.00m~20.00m	2.00m
FE.67	Anti-swing Control	Ones-bit: Anti-swing switch 0: OFF 1: ON Tens-bit: Fixed rope length 0: OFF For OFF, anti-swing control will be performed with the rope length obtained from the hoisting drive. 1: ON For ON, the anti-swing control will be performed using the rope length set in FE.68. If	0001

5.7.3 Relevant Parameters

		the rope length is known, check the anti-swing performance here.	
FE.68	Fixed Rope Length	0.00m~300.00m	10.00m

5.8 Ant-Speed (Slow Positioning)

Antspeed function, also called slow positioning, is for precise inching need in tower crane operations.

Set FC.51 to1 or 2, and enable the antspeed function via the multi-function input terminal with number of 87.

For FC.51=1, Target frequency=Current gear frequency*FC.52 (ant-speed proportional gain); For FC.51 = 2, Target frequency=FC.53.

Code	Name	Description	Default
FC.46	Antspeed Gear 1	0.00Hz~50.00Hz	3.00Hz
FC.47	Antspeed Gear 2	0.00Hz~50.00Hz	4.00Hz
FC.48	Antspeed Gear 3	0.00Hz~50.00Hz	5.00Hz
FC.49	Antspeed Gear 4	0.00Hz~50.00Hz	6.00Hz
FC.50	Antspeed Gear 5	0.00Hz~50.00Hz	7.00Hz
FC.51	Antspeed Selection	0: For integrated tower crane (FC.46~FC.50)1: Single drive antspeed 1 (Gear frequency*FC.52)2: Single drive antspeed 2 (FC.53)	0
FC.52	Antspeed Proportional Gain	0.0%~100.0%	20.0%
FC.53	Antspeed Frequency	0.00Hz~50.00Hz	5.00Hz

Related parameters:

5.9 Slewing Control

The AC70T series provides two slewing control schemes, with/without eddy current control, as shown in the following table:

Name	Motor	Mode
Without eddy control (recommended)	General motor	SVC/FVC
With eddy control	Special motor, General motor with eddy current brake	SVC1+Eddy Control

Note: Some slewing mechanisms use general motors with eddy current brakes; however, "without eddy control" scheme is preferable, and the motor-side eddy current coil can remain unwired.

5.9.1 Without Eddy Control

1. Debugging Method

See "4.2 Trial Operation Guide".

Code	Name	Description	Default
FF.36	Slewing Control 1	Thousand-bits: Eddy-free frequency control 0: OFF 1: ON	1101
FE.55	Stable Control Gain	Increase when there is rebound during stop. Range: 0.00~50.00	8.00
FE.57	Stop Frequency Base	Increase when there is rebound during stop. Keep at or below 1.00 Hz to prevent issues with long jog distance. Range: 0.00Hz~10.00Hz	0.50Hz
FF.84	Slewing Jib Length	Up to actual crane jib length. Range: 0m~200m	60m
FF.85	Slewing Acceleration Gain	Increase for longer acceleration time and jib length.	110%
FF.86	Slewing Deceleration Gain	Increase for longer deceleration time and jib length. Range: 50%~500%	90%
FF.87	Slewing Control 2	Ones-bit: Reserved Tens-bit: Reserved Hundredths-bit: REV gear for deceleration 0: OFF 1: ON Set the deceleration time for slewing in REV gear in FE.97. Thousands-bit: Eddy-free stable slewing control 0: OFF Others: ON	4100
FF.97	REV Gear for Deceleration Coefficient	If REV Gear for Deceleration is ON (FF.87 hundreds-bit=1), Actual decel. time=FF.97*Original decel. time Range: 0.0%~100.0%	70.0%

2. Relevant Parameters

5.9.2 With Eddy Control

"With Eddy Control" scheme includes frequency control and eddy control, and the motor control mode should be set as SVC1 (F0.00=0), and "eddy-free frequency control" should be OFF (FF.36 thousands=0).

1. Frequency Control

In SVC1, the acceleration and deceleration time is used by default of set 1 to 4, with curve shown below:

Related parameters:

Code	Name Description		Default
F0.14	Acceleration Time 1	0.01s~650.00s	8.00s
F0.15	Deceleration Time 1	0.01s~650.00s	20.00s
F1.21	Acceleration Time 2	0.01s~650.00s	20.00s
F1.22	Deceleration Time 2	0.01s~650.00s	20.00s
F1.23	Acceleration Time 3	0.01s~650.00s	25.00s
F1.24	Deceleration Time 3	0.01s~650.00s	15.00s
F1.25	Acceleration Time 4	0.01s~650.00s	25.00s
F1.26	Deceleration Time 4	0.01s~650.00s	10.00s
FF.41	Segmented Accel./Decel. Switching Frequency 1	0.00Hz~Max. frequency	9.00Hz
FF.42	Segmented Accel./Decel. Switching Frequency 2	0.00Hz~Max. frequency	21.00Hz
FF.43	Segmented Accel./Decel. Switching Frequency 3	0.00Hz~Max. frequency	36.00Hz

5.10 Eddy Control

Slewing eddy current control brakes the operating motor by applying DC voltage from the eddy current module to the slewing motor's eddy coil, which produces a magnetic field. Eddy control contributes to the stable operation of the tower jib and functions as follows:

At the same motor speed, higher eddy output voltage results in greater braking force;

At the same eddy output voltage, higher motor speed results in greater braking force. For stable tower jib operation, it follow the principle that "higher the output frequency, lower the eddy output voltage". Set the relevant parameters as below.

5.10.1 Step 1: Set Eddy Control Mode

Mode	Controlled variable	Setting
Method 1	The controlled variable of eddy module is a $0V\sim10V$ DC voltage, and does not involve the eddy duty cycle (F3.53/F3.54 \neq 20).	Available for AO1 or AO2; Set F3.53 ones- or tens-bit to 0; see Step 2 for polarity setting.
Method 2	The controlled variable of eddy module is pulse signal (PWM+, PWM-).	AO2 only; Set F3.53 tens-it to 4; see Step 2 for polarity setting.
Method 3	The controlled variable of eddy module is a 0V~10V DC voltage, and involves the eddy duty cycle (F3.53/F3.54=20).	Available for AO1 or AO2; Set F3.53 ones- or tens-bit to 0; see Step 2 for polarity setting.

5.10.2 Step 2: Set Eddy Control Polarity

Determine the eddy current module's polarity based on the principle "higher the motor speed, lower the eddy current voltage". Adjust control polarity as needed for the eddy control mode. Method 1: Set F3.53 hundreds- or thousands-bit to 1; Method 2 or Method 3: Set FF.53 to 0.

5.10.3 Step 3: Adjust Eddy Control

Method 1: Overall adjustment via F3.56 [AO1 Gain] or F3.59 [AO2 Gain]; Method 2 or Method 3: Eddy duty cycle control as figure below:

Eddy Duty Cycle Control Diagram

In Operation: Upon receiving an operation command, output the eddy duty cycle as set in FF.48; at the output frequency of FF.45, follow FF.49's setting; and reduce the duty cycle to zero at FF.46.

In Stop Progress: As the output frequency below FF.47, the eddy duty cycle begins to increase; at FF.45, it equals to FF.49; below 0Hz, it aligns with FF.48. Upon stopping, the duty cycle increase (or decrease) to FF.54 at a rate set by FF.50. **After Stop:** The eddy current duty cycle holds at FF.51 until it times out. See related parameters as table below:

Code	Name	Description	Default
FF.45	Eddy Frequency 1	0.00Hz~Max. frequency	20.00Hz
FF.46	Eddy Frequency 2	0.00Hz~Max. frequency	40.00Hz
FF.47	Eddy Frequency 3	0.00Hz~Max. frequency	40.00Hz
FF.48	Zero-Speed Duty Cycle	0.0%~100.0%	0.0%
FF.49	Duty Cycle to Eddy Frequency 1	0.0%~100.0%	0.0%
FF.50	Max. Duty Cycle at Stop	0.0%~100.0%	80.0%

FF.51	Eddy Holding Time at Stop	0.0s~3000.0s	60.0s
FF.52	Eddy Output Carrier	0.20kHz~4.00kHz	0.20kHz
FF.53	Duty Cycle Polarity	0: Positive 1: Negative	1
FF.54	Duty Cycle Change Rate at Stop	0.0%~50.0% Time unit is 100ms	0.5%

5.11 Slewing Flexible Control

Flexible control aims to improve the "stuttering" issue for tower jib slewing.

When FF.36 ones-bit=1, slewing flexible control is ON;

FF.36 tens-bit=1, the accel./decel. time of flexible control is determined by FF.39 and FF.40 respectively. The following figure shows the the flexible control for accel. and decel. in Gear 2.

Relevant parameters:

Code	Name	Description	Default
FF.36	Slewing Control 1	Ones-bit: Flexible control 0: OFF 1: ON To address tower jib "stuttering" issue, see flexible control description for details. Tens-bit: Flexible control accel./decel. time 0: OFF 1: ON	1101
FF.37	Flexible Control Start Deviation Frequency	0.00Hz~20.00Hz	2.50Hz
FF.38	Flexible Control Direction Change Deviation Frequency	0.00Hz~20.00Hz	2.50Hz
FF.39	Flexible Control Acceleration Time 1	0.00Hz~650.00s	20.00s
FF.40	Flexible Control Deceleration Time 2	0.00Hz~650.00s	20.00s

5.12 Slewing-Specific Acceleration/Deceleration

Code	Name	Description	Default
FF.36	Slewing Control 1	Hundreds-bit: Slewing-specific acceleration/deceleration 0: OFF 1: ON The accel. and decel. time of slewing is determined by parameter group FB.	1101
FB.00	Acceleration Section 1	0.1%~FB.02	10.0%
FB.01	Step Acceleration Time 1	0.00s~30.00s	0.50s
FB.02	Acceleration Section 2	FB.00~FB.04	20.0%
FB.03	Step Acceleration Time 2	0.00s~30.00s	0.70s
FB.04	Acceleration Section 3	FB.02~FB.06	30.0%
FB.05	Step Acceleration Time 3	0.00s~30.00s	0.90s
FB.06	Acceleration Section 4	FB.04~FB.08	40.0%
FB.07	Step Acceleration Time 4	0.00s~30.00s	1.10s
FB.08	Acceleration Section 5	FB.06~FB.10	50.0%
FB.09	Step Acceleration Time 5	0.00s~30.00s	1.30s
FB.10	Acceleration Section 6	FB.08~FB.12	60.0%

FB.11	Step Acceleration Time 6	0.00s~30.00s	1.50s
FB.12	Acceleration Section 7	FB.10~FB.14	80.0%
FB.13	Step Acceleration Time 7	0.00s~30.00s	3.40s
FB.14	Acceleration Section 8	FB.12~300.0%	100.0%
FB.15	Step Acceleration Time 8	0.00s~30.00s	3.80s
FB.16	Deceleration Section 1	0.1%~FB.18	10.0%
FB.17	Step Deceleration Time 1	0.00s~30.00s	3.00s
FB.18	Deceleration Section 2	FB.16~FB.20	20.0%
FB.19	Step Deceleration Time 2	0.00s~30.00s	2.40s
FB.20	Deceleration Section 3	FB.18~FB.22	30.0%
FB.21	Step Deceleration Time 3	0.00s~30.00s	2.00s
FB.22	Deceleration Section 4	FB.20~FB.24	40.0%
FB.23	Step Deceleration Time 4	0.00s~30.00s	1.80s
FB.24	Deceleration Section 5	FB.22~FB.26	50.0%
FB.25	Step Deceleration Time 5	0.00s~30.00s	1.60s
FB.26	Deceleration Section 6	FB.24~FB.28	60.0%
FB.27	Step Deceleration Time 6	0.00s~30.00s	1.50s
FB.28	Deceleration Section 7	FB.26~FB.30	80.0%
FB.29	Step Deceleration Time 7	0.00s~30.00s	2.40s
FB.30	Deceleration Section 8	FB.28~300.0%	100.0%
FB.31	Step Deceleration Time 8	0.00s~30.00s	2.00s

6 Parameter List

"•": the parameter can be modified when AC drive is operating;

"O": the parameter can't be modified when AC drive is operating;

"×": the parameter is read-only and cannot be modified.

6.1 Group F0: Basic Settings

Code	Name	Description	Default	Prop erty	Address
F0.00	Motor Control Mode	Asynchronous motor (AM) control: 0: SVC1 3: SVC2; 4: FVC	0	0	0x000
F0.01		Reserved			
F0.02	Command Channel	0: Keyboard control 1: Terminal control 2: RS485 communication control 3: Optional card	1	•	0x002
F0.03	Frequency Source A	0: Via keyboard 1: Via keyboard potentiometer	0	•	0x003
F0.04	Frequency Source B	 2: Via VS (voltage analog) 3: Via current/voltage AI 4: Via AS (current analog) 5: Reserved 6: Via RS485 communication 7~9: Reserved 10: Via optional card 11: Via multi-segment speed 	1	•	0x004
F0.05	Reference of Source B	0: Max. output frequency 1: Channel A	0	•	0x005
F0.06	Frequency Source	0: Channel A 1: Channel B 2: Channel A + Channel B 3: Channel A - Channel B 4: Max (A, B) 5: Min (A, B)	0	•	0x006
F0.07		Reserved	•		
F0.08	Frequency Given via Keyboard	0.00Hz~Upper limit frequency	10.00Hz	•	0x008

Ο

0

0x013

F0.09	Max. frequency	Upper limit frequency~600.00Hz	100.00Hz	0	0x009
F0.10	Upper Limit Frequency Source	0: Via keyboard-given upper limit frequency Set by F0.11	0	•	0x00A
F0.11	Upper Limit Frequency via Keyboard	F0.12~F0.09	100.00 Hz	•	0x00B
F0.12	Lower Limit Frequency	0.00Hz~Upper limit frequency	0.00Hz	•	0x00C
F0.13	Lower Limit Frequency Operation	0: Stop the output, and enter halt mode 1: Run at lower limit frequency	1	0	0x00D
F0.14	Acceleration Time	0.01s~650.00s	6.00s	*	0x00E
F0.15	Deceleration Time	0.01s~650.00s	2.00s	*	0x00F
Max./Fixed freq. Output freq. Output freq. Actual accel. time F0.14 [Accel. Time 1] Acceleration and Deceleration Time Schematic Acceleration time is the duration for output frequency to increase from 0.00Hz to the reference frequency; deceleration time is the duration to slow from the reference frequency to 0.00Hz. Choose the time					
F0.16	Rotation Direction	Ones-bit: REV direction 0: Keep the direction 1: Invert the direction Tens-bit: Direction disable 0: FWD/REV allowed 1: Only FWD allowed 2: Only REV allowed Hundreds-bit: Reserved Thousands-bit: Reserved	0000	0	0x010
E0.17 E0.19 Reserved					

F0.19

Parameter

0: OFF

Initialization	 Restore the factory default (not include motor parameters) Restore the factory default (include motor parameters) 		
	(include motor parameters)		
	3: Clear fault records		

6.2 Group F1: Operation Control

Code	Name	Description	Default	Prop erty	Address
F1.00	Start Mode	0: Start at starting frequency 1: Start from DC braking and then at starting frequency	0	0	0x100
F1.01	Pre-excitation Start Time	Range: 0.00s~60.00s	0.00s	0	0x101
F1.02	Starting Frequency	Initial frequency at which the AC is started. Range: 0.00Hz~60.00Hz	0.50Hz	0	0x102
F1.03	Starting Frequency Holding Time	Refer to the holding time when the AC drive receives the command and runs at the starting frequency, and then enters the normal acceleration and deceleration. Range: 0.0s~50.0s	0.0s	0	0x103
F1.04	Braking Current before Startup	It refers to the current flowing through the motor during DC braking, which 100.0% corresponds to the motor rated current. Range: 0.00Hz~60.00Hz	60.0%	0	0x104
F1.05	Braking Time before Startup	It refers to DC braking retention at startup, and is invalid if sets to 0.0s. Range: 0.0s~60.0s	0.0s	0	0x105
	Sta	artup and FWD/REV Switching Proce	ess		

F1.15	Stop Detection Frequency	In deceleration stop mode, the drive blocks the output when the output frequency is lower than this value, then stops. Range: 0.00Hz~50.00Hz	0.50Hz	•	0x10F
F1.16	Acceleration/Decele ration	Ones-bit: Time reference 0: Max. frequency 1: Fixed frequency of 50.00Hz 2: set frequency Tens-bit: Accel/decel. type 0: Linear line The output frequency is accelerated and decelerated according to the linear line. 1: S-curve The output frequency is accelerated and decelerated according to the S curve. Hundreds-bit: Reserved Thousands-bit: Reserved	0011	0	0x110
F1.17	Accel. S-Curve Start Time	The holding time of S-curve before the acceleration starts. Range: 0.00s~10.00s	0.00s	0	0x111
F1.18	Accel. S-Curve End	The holding time of S curve before acceleration reaches the set frequency and ends. Range: 0.00s~10.00s	0.00s	0	0x112
F1.19	Decel. S-Curve Start Time	The holding time of S-curve before the deceleration starts. Range: 0.00s~10.00s	0.00s	0	0x113
F1.20	Decel. S-Curve End Time	The holding time of S curve before deceleration reaches the 0Hz and ends. Range: 0.00s~10.00s	0.20s	0	0x114
See the S-curve characteristics during FWD/REV as below:					

		_						
FV	VD ON	OFF						
RF	TV	ON	1	0	FF			
K								
	F1.18	F1.19						
Output fre	Output freq. $(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$							
		F1.17		F1.20)			
				, ,				
		F1.18	-	F1.19				
					r			
F1.21	Acceleration Time 2	0.01s~650.00s	20.00s	•	0x115			
F1.22	Deceleration Time 2	0.01s~650.00s	20.00s	•	0x116			
F1.23	Acceleration Time 3	0.01s~650.00s	25.00s	•	0x117			
F1.24	Deceleration time 3	0.01s~650.00s	15.00s	•	0x118			
F1.25	Acceleration Time 4	0.01s~650.00s	25.00s	•	0x119			
F1.26	Deceleration Time 4	0.01s~650.00s	10.00s	•	0x11A			
		Deceleration time of AC drive						
F1.27	Emergency Stop	upon receiving an emergency stop	1.00s	•	0x11B			
/	Decel. Time	command.						
		Range: 0.01s~650.00s						
		The hold time at 0.0Hz when the						
F1.28	FWD/REV	AC drive switches between FWD	0.0s	0	0x11C			
	Deadtime	and REV.						
		Range: 0.0s~120.0s						
	Zero-Servo Torque			_				
F1.29	Frequency	0.00Hz~10.00Hz	0.50Hz	•	0x11D			
	Threshold							
F1.30	Zero-Servo Torque	0.0%~150.0%	60.0%	•	0x11E			
	Hold Coefficient	When set to 6000 0s, it has been						
F1 31	Zero-Servo Torque	held	0.0s		0v11F			
11.51	Hold Time	Range: 0.0s~6000.0s	0.03		UXIII			
F	1.32~F1.34	Res	erved	1	1			
		0: OFF	T					
		The AC drive will run only after						
F1.35	Power-Down	receiving a new operation	0	0	0x123			
	Restart	command upon power-up.	-		-			
		1: ON						

		If the AC drive was running			
		before power loss, it will auto-			
		restart in "By speed tracking"			
		mode after power-on and F1.36			
		[Power-Down Restart Waiting			
		Time]. During the wait, it doesn't			
		accept operation command;			
		however, a stop command during			
		this time can cancel the restart.			
		Note:			
		The "Power-Down Restart"			
		function make the drive start			
		automatically upon power-on.			
		Please use it carefully for personal			
		and equipment safety.			
	Power-Down	The waiting time before operation			
F1.36	Restart Waiting	after power-on.	0.50s	0	0x124
	Time	Range: 0.00s~60.00s			
F1.37		Reserved		-	
F1.38	JOG Frequency	0.00Hz~Max. frequency	5.00Hz	•	0x126
F1.39	JOG Accel. Time	0.01s~650.00s	10.00s	•	0x127
F1.40	JOG Decel. Time	0.01s~650.00s	10.00s	•	0x128
F	1.41~F1.44	Reserved			

6.3 Group F2: Switch Terminal

Code	Name	Description	Default	Prop erty	Commu nication Address
F2.00	Input Terminal 1	0: none	1	0	0x200
	(X1)	2: Reverse operation	•		0.1200
	Input	3: Three-line operation (Xi)			
F2.01	Terminal 2	4: Forward jogging	2	0	0x201
	(X2)	5: Reverse jogging			
F2.02	Input	6: Free stop			
	Terminal 3	7: Emergency stop	16	0	0x202
	(X3)	8: Fault reset			

F2.03	Input Terminal 4 (X4)	 9: External fault input 10~12: Reserved 13: Channel A to Channel B 14: Combined frequency channel to A 15: Combined frequency channel to B 16: Multi-segment speed terminal 1 	17	0	0x203	
F2.04	Input Terminal 5 (X5)	 17: Multi-segment speed terminal 2 18: Multi-segment speed terminal 3 19: Multi-segment speed terminal 4 20~31: Reserved 32: Accel./decel. time selection terminal 1 33: Accel./decel. time selection terminal 2 34: Accel./decel. pause 35~39: Reserved 40: Timer triggering terminal 41: Timer reset terminal 42: Counter clock input terminal 43: Counter reset terminal 44: DC brake command 45: Pre-excitation command terminal 	18	0	0x204	
F2.05	Input Terminal 6 (X6)	 46: Reserved 47: Reserved 48: Command channel to keyboard 49: Command channel to terminal 50: Command channel to communication 51: Command channel to expansion card 52: Operation disabled 	19	0	0x205	
F2.06	Input Terminal 7 (X7)	52: Operation disabled 53: Forward operation disabled 54: Reverse operation disabled 55~79: Reserved 80: Weight alarm switch terminal 81: Empty cage weighing correction terminal 82: Brake torque detection 83: Input phase loss detection blocked 84: Decel. optimization lower limit 85: Decel. optimization upper limit 86: DO OFF delay interruption 87: Ant-speed (slow positioning) switch 88: Pre-brake for slewing 89: Lifting upper limit 90: Anti-swing switch 91: Devise for sheads	8	0	0x206	
F2.07	Reserved					

F2.08	X1~X4 Terminal Characteri stics	It is used to set the polarity of the input terminal. 0: ON; 1: OFF Ones-bit: X1 Tens-bit: X2 Hundreds-bit: X3 Thousands-bit: X4	0000	•	0x208
F2.09	X5~X7 Terminal Characteri stics	It is used to set the polarity of the input terminal. 0: ON; 1: OFF Ones-bit: X5 Tens-bit: X6 Hundreds-bit: X7 Thousands-bit: Reserved	0000	•	0x209
F2.10	X1 ON Detection Delay		0.010s	•	0x20A
F2.11	X1 OFF Detection Delay		0.010s	•	0x20B
F2.12	X2 ON Detection Delay		0.010s	•	0x20C
F2.13	X2 off detection delay		0.010s	•	0x20D
F2.14	X3 ON Detection Delay	ON: Delay time for terminal X1~X7 from OFF to ON.	0.010s	•	0x20E
F2.15	X3 OFF Detection Delay	from ON to OFF. Range: 0.010s~6.000s	0.010s	•	0x20F
F2.16	X4 ON Detection Delay		0.010s	•	0x210
F2.17	X4 OFF Detection Delay		0.010s	•	0x211
F2.18	X5 ON Detection Delay		0.010s	•	0x212
F2.19	X5 OFF Detection Delay		0.010s	•	0x213

F2.20	X6 ON Detection		0.010s	•	0x214
12.20	Delay		0.0105		0.1211
	X6 OFF				
F2.21	Detection		0.010s	•	0x215
	Delay				
	X7 ON				
F2.22	Detection		0.010s	•	0x216
	Delay				
	X7 OFF				
F2.23	Detection		0.010s	•	0x217
	Delay				
F2.24	~F2.25	Reserved			
		0: Two-wire control 1			
		Operation and direction are set at the same			
		time. This is the most commonly used two-			
		wire mode. Default: X1 (FWD) and X2			
		(REV) terminal control the motor to run			
		forward or reverse.			
		1: Two-wire control 2			
		Operation and direction are respectively			
		controlled. The forward running terminal			
		X1 (FWD) defined in this mode is used to			
		enable motor running. The direction is			
	Terminal-	defined by the status of the reverse running			
F2 26	Controlled	terminal X2 (REV).	0	0	0-214
F2.20	Operation	2: Three-line control 1	0	0	0X21A
	Mode	The three-line control terminal (Xi) of this			
		mode is a stop terminal and the operation			
		command is sent by X1 (FWD) and the			
		direction is controlled by X2 (REV). The			
		three-line operation control terminal (Xi) is			
		a valid input.			
		3: Three-line control 2			
		The three-line control terminal (Xi) of this			
		mode is a stop terminal and the operation			
		command is sent by X1 (FWD) or X2			
		(REV), and the two control the direction			
		simultaneously.			
		When the drive stops due to abnormality in			
	Terminal	operation, if protection is OFF, it restarts			
F2.27	Start	directly after the issue cleared; with	0111	0	0x21B
	Protection	protection ON, the start command must be			
		reset post-clearance before restarting.			

		0: OFF 1: ON Ones-bit: Terminal start protection in case of abnormal exit Tens-bit: JOG terminal start protection in case of abnormal exit Hundreds-bit: Start protection when command channel is switched to terminal Theorem de bit: Properties			
E2 29	F2 42	Thousands-bit: Reserved			
F2.28	~F2.43	Reserved			
F2.44	Output Terminal Polarity	Used to set the polarity of output terminal. 0: Positive 1: Negative Ones-bit: Y terminal output Tens-bit: Relay output 1 Hundreds-bit: Relay output 2 Thousands-bit: Reserved	0000	•	0x22C
F2.45	Y Terminal Output	 0: No output 1: Drive in operation 2: Drive in reverse operation 3: Drive in forward operation 4: Fault trip alarm 1 (alarm during auto recovery from failure) 5: Fault trip alarm 2(no alarm during auto recovery from failure) 6: Drive undervoltage 	33	•	0x22D
F2.46	RO1 (TA1/TB1 -TC1)	 6: Drive undervoltage 8: Drive ready for operation 9: output frequency level detection 1 (FDT1) 10: output frequency level detection 2 (FDT2) 11: Given frequency reached 12: Zero-speed operation in progress 13~23: Reserved 24: Dynamic brake in progress 25: PG disconnection feedback 26: Emergency stop in progress 27: Load warning output 1 28: Load warning output 2 	4	•	0x22E
F2.47	RO2 (TA2/TB2 -TC2)	33: Brake control34: Input phase loss35: Brake failure protection in progress	33	•	0x22F

	-			-	-
		36: Insufficient Brake torque error			
		detection			
		37: Slewing-specific brake control			
	Y ON				
F2.48	Delay		0.010s	•	0x230
	Time	Timing begins when the corresponding			
	Relay1	controlled output terminal switches from			
F2.49	ON Delay	OFF to ON, and an ON status is output only	0.010s	•	0x231
	Time	when the timing meets the set value.			
	Relav2	Range: 0.010s~6.000s			
F2.50	ON Delay	9	0.010s	•	0x232
12.50	Time		0.0105		0//252
	Output				
	Fraguency				
F2.51	Level 1	During acceleration, a valid (ON) signal is	2.00Hz	•	0x233
	(EDT1)	output after the hysteresis time of			
	(I'DTI)	F2.52/F5.54 once the drive's output			
F2.52		frequency surpasses F2.51/F5.53.	1.00Hz	•	0x234
	Hysteresis	During deceleration, an invalid (OFF)			
	Output	signal is output after the hysteresis time of			
F2.53	Frequency	F2.52/F5.54 once the drive's output	2.00Hz •	0x235	
	Level 2	frequency lower than F2.51/F5.53.			
	(FD12)	Range: 0.00Hz~Max. frequency			
F2.54	FDT2		1.00Hz	•	0x236
	Hysteresis				
Frequency l	Level Detection	n Schematic			
	—————————————————————————————————————		FDT	hysteresis	3
			\backslash		
Output fr	req.				
FDT dete	ction		1		
output si	gnal	ON		()FF
		When the output frequency of the AC			
		drive meets or is near the set frequency,			
	Given	select output terminals (Y/TA1-TB1-TC1,			
F2.55	Frequency	TA2-TB2-TC2) to ON signal of which	2.00Hz	•	0x237
	Arrival	"set frequency is reached." This function			
	Detection	adjusts the detection range's upper and			
		lower deviations.			
		Range: 0.00Hz~50.00Hz			

F2.56	Y OFF Delay Time		0.010s	•	0x238
F2.57	(TA1/TB1 -TC1) Relay1 Output OFF Delay	Timing begins when the corresponding controlled output terminal switches from ON to OFF, and an OFF status is output only when the timing meets the set value.	0.010s	•	0x239
F2.58	(TA2/TB2 -TC2) Relay2 Output OFF Delay	Range: 0.000s~6.000s	0.010s	•	0x23A
F2.59~F2.99		Reserved			

6.4 Group F3: Analog Terminal

Code	Name	Description	Default	Prop erty	Commu nication Address
F3.00	VS Lower Limit	Define the signal received by the AI terminal (VS), and the voltage signal below this value is processed as the VS lower limit. Range: 0.00V~10.00V	0.00V	•	0x300
F3.01	VS Lower Limit Percentage	Set the percentage of the value corresponding to the VS lower limit. Range: -100.00%~100.00%	0.00%	•	0x301
F3.02	VS Upper Limit	Define the signal received by the AI terminal (VS), and the voltage signal greater than this value will be processed by AC drive as VS upper limit. Range: 0.00V~10.00V	10.00V	•	0x302
F3.03	VS Upper Limit Percentage	Set the percentage of the VS upper limit. Range: -100.0%~100.0%	100.00%	•	0x303

F3.04	VS Filter Time	Define the size of the filter applied to the AI (VS) signal to remove interference signals. The longer the filter time, the stronger the anti-interference ability, but the response becomes slower; the shorter the filter time, the weaker the anti-interference ability, but the response becomes faster. Range: 0.000s~6.000s	0.010s	•	0x304
F3.05	VS Zero Hysteresis Voltage	0.00V~10.00V	0.00V	•	0x305
Analog Givi	ing Frequency Schemat	ic			
Given freq. $F0. 09 \times F3. 03$ $F0. 09 \times F3. 01$ $F0. 09 \times F3. 01$ $F0. 09 \times F3. 01$ F3. 00 F3. 02 F3. 02 $F3. 09 \times F3. 01$ F3. 00 F3. 02 $F3. 00 \times F3. 01$ F3. 02 $F3. 00 \times F3. 01$ F3. 02 F3. 02					
F3.06	AI(VS) Lower Limit	0.00V~10.00V	0.00V	•	0x306
F3.07	AI(VS) Lower Limit Percentage	0.00%~100.00%	0.00%	•	0x307
F3.08	AI(VS) Upper Limit	0.00V~10.00V	10.00V	•	0x308
F3.09	AI(VS) Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x309
F3.10	AI Filter Time	0.000s~6.000s	0.010s	•	0x30A
F3.11	AS Lower Limit	0.00mA~20.00mA	4.00mA	•	0x30B
F3.12	AS Lower Limit Percentage	0.00%~100.00%	0.00%	•	0x30C
F3.13	AS Upper Limit	0.00mA~20.00mA	20.00 mA	•	0x30D
F3.14	AS Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x30E
F3.15	AS Filter Time	0.000s~6.000s	0.010s	•	0x30F
F3.16	AI(AS) Lower Limit	0.00mA~20.00mA	4.00mA	•	0x310
	r	r			r
-------	--	---	-------------	---	-------
F3.17	AI(AS) Lower Limit Percentage	0.00%~100.00%	0.00%	•	0x311
F3.18	AI(AS) Upper Limit	0.00mA~20.00mA	20.00 mA	•	0x312
F3.19	AI(AS) Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x313
F3.20	VS Terminal Function (as X Terminal)	See terminal functions.	0	0	0x314
F3.21	VS High Level	0.00%~100.00%	70.00%	•	0x315
F3.22	VS Low Level	0.00%~100.00%	30.00%	•	0x316
F3.23	AI Terminal Function (as X Terminal)	See terminal functions.	0	0	0x317
F3.24	AI High Level	0.00%~100.00%	70.00%	•	0x318
F3.25	AI Low Level	0.00%~100.00%	30.00%	•	0x319
F3.26	AS Terminal Function (as X Terminal)	See terminal functions.	0	0	0x31A
F3.27	AS High Level	0.00%~100.00%	70.00%	•	0x31B
F3.28	AS Low Level	0.00%~100.00%	30.00%	•	0x31C
F3.29	Analog Giving Terminal Status	Set the polarity of the input terminal. 0: Low level 1: High level Ones-bit: VS Tens-bit: AI Hundreds-bit: AS Thousands-bit: Reserved	0000	•	0x31D
F3.30	AI Curve	Ones-bit: VS 0: Linear line (default) 1: Curve 1 2: Curve 2 Tens-bit: AI (select voltage/current input via jumper) Hundreds-bit: AS Thousands-bit: Reserved	0000	•	0x31E
F3.31	Reserved				
F3.32	Curve 1 lower limit	0.00V~10.00V	0.00V	•	0x320
F3.33	Curve 1 Lower Limit Percentage	0.00%~100.00%	0.00%	•	0x321

F3.34	Curve 1 Inflection Point1 Input Voltage	0.00V~10.00V	3.00V	•	0x322
F3.35	Curve 1 Inflection Point1 Percentage	0.00%~100.00%	30.00%	•	0x323
F3.36	Curve 1 Inflection Point2 Input Voltage	0.00V~10.00V	6.00V	•	0x324
F3.37	Curve 1 Inflection Point2 Percentage	0.00%~100.00%	60.00%	•	0x325
F3.38	Curve 1 Upper Limit	0.00V~10.00V	10.00V	•	0x326
F3.39	Curve 1 Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x327
F3.40	Curve 2 Lower Limit	0.00V~10.00V	0.00V	•	0x328
F3.41	Curve 2 Lower Limit Percentage	0.00%~100.00%	0.00%	•	0x329
F3.42	Curve 2 Inflection Point1 Input Voltage	0.00V~10.00V	3.00V	•	0x32A
F3.43	Curve 2 Inflection Point1 Percentage	0.00%~100.00%	30.00%	•	0x32B
F3.44	Curve 2 Inflection Point2 Input Voltage	0.00V~10.00V	6.00V	•	0x32C
F3.45	Curve 2 Inflection Point2 Percentage	0.00%~100.00%	60.00%	•	0x32D
F3.46	Curve 2 Upper Limit	0.00V~10.00V	10.00V	•	0x32E
F3.47	Curve 2 Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x32F
Multi-point	Curve Schematic				

Note: After setting the output mode, set the ON/OFF status of the control board's switches J1, J2, and J3 as follows:

1. For frequency pulse output (tens-bit set to 3 or 4), switch to J1;

2. For 0.00mA~20.00mA or 4.00mA~20.00mA output, switch to J2;

3. For 0V~10V output, switch to J3;

The AC drive defaults to 0V~10V output; modify both software and hardware simultaneously according to the actual output signal if changes are needed.

Swit	ch	Position	Legend	Description			
		J1		Output 0kHz- frequency	~50kHz		
J2		J2		Output 0mA~20mA current Output 4mA~20mA current			
		J3		Output 0V~1)V voltag	ge.	
 F2 54	4.01	Guladia	0: Target frequency	0	-	0x22	6
15.54	AUI	Selection	1: Output frequency	0	•	0,55	0
F3.55	A02 :	Selection	 2: Output current 3: Input voltage 4: Output voltage 5: Mechanical speed 6: Given torque 7: Output torque 8: PID given 9: PID feedback 10: Output power 11: Bus voltage 12: VS input 13: AI 14: AS input 15: PUL input 16: Module temperature 1 17: Module temperature 2 18: RS485 setting 19: Reserved 20: Eddy duty cycle control 	1	•	0x33	7
F3.56	AO1	Gain	25.0%~200.0%	100.0%	٠	0x33	8
F3.57	AO1 Devia	Signal ation	-10.0%~10.0%	0.0%	•	0x33	9
F3.58	AO1	Filter	0.000s~6.000s	0.010s	•	0x33	A
F3.59	AO2	gain	25.0%~200.0%	100.0%	٠	0x33	В
F3.60	AO2 Devia	Signal ation	-10.0%~10.0%	0.0%	٠	0x33	С

F3.61	AO2 Filter	0.000s~6.000s	0.010s	•	0x33D
F3.62	AO2 FM Frequency Lower Limit	0.00kHz~100.00kHz	0.20kHz	•	0x33E
F3.63	AO2 FM Frequency Upper Limit	0.00kHz~100.00kHz	50.00 kHz	•	0x33F
F3.64~F3.79		Rese	rved		

6.5 Group F4: System Parameters

Code	Name	Description	Default	Prop erty	Address
F4.00	Parameter/Key Lock	0: Lock OFF 1: Parameter locked Parameter modification locked 2: Parameter and key locked (except FWD/STOP/JOG) Parameter modification locked, as well as all keys on the keyboard except FWD/STOP/JOG/PRG. 3: Parameters and all keys locked Parameter modification locked, as well as all keys on the keyboard except PRG. Note: 1. Unlock double-line keyboard: Press "PRG" and see "Code" on the first line. Enter the user password (F4.01) using UP/DW and press "SET" to unlock. 2. Unlock single-line keyboard: Press "PRG" and "Code" is displayed. Press "SET" for a blinking cursor, then enter the password (F4.01) via UP/DW, and press "SET" again to confirm and unlock. 3. The user password protects against unauthorized changes to AC drive parameters. Record it securely to avoid issues when parameter adjustments are	1	•	0x400
F4.01	User Passwords	Set the user password. When F4.00 [Parameter/Key Lock] is ON (when it is not "0"), this password must be entered for unlocking. The factory default password is 0. Please keep the set password safe.	***	•	0x401

		Range: 0~9999		
F4.04		Reserved		
F4.05	Parameter Copy	 9: OFF 1: AC drive parameters are transmitted to the keyboard and saved 2: parameters saved in the keyboard are transmitted to the AC drive Note: 1. When AC drive is in operation or faulty status or there is no parameter saved in the keyboard, the parameter value saved in the keyboard cannot be transmitted to AC drive. 2. When AC drive parameter value saved in the keyboard and saved, if the keyboard is disconnected it will not complete the copying and the parameter copying operation needs to be performed again. 3. When the parameter values saved in the keyboard is disconnected, it will appear that the previous part of the parameters are modified and the latter part of the parameters are not modified, so it is necessary to carry out this operation again. 4. When the AC drive parameters are not modified, so it is necessary to carry out this operation again. 4. When the AC drive parameters are not modified, so it is necessary to carry out this operation again. 5. If an error occurs during parameter copying, the keyboard are transmitted to the keyboard in the keyboard in the keyboard. 	0	0x405

F4.00		and the parameter copying operation needs to be resumed by pressing the PRG key to exit the the interface that displays E.CPE and return to the monitoring interface.			
F4.06		Reserved			
F4.07	REV/JOG Key Selection	Select the function of REV/JOG. 0: REV As a reverse key (with the REV/JOG indicator off). Press it for reverse running in the keyboard control mode. 1: JOG As a JOG key (with the REV/JOG indicator on). Press it for jogging in the keyboard control mode .	0	0	0x407
F4.08	STOP Key Selection	0: Non-keyboard control OFF 1: Non-keyboard stop works as stop mode 2: Non-keyboard stop works as free stop mode	0	0	0x408
F4.09	UP/DW Key Selection	Ones-bit: UP/DW modification 0: OFF 1: Adjust F0.08 2: Adjust FB.01 Tens-bit: Stored in power-down 0: Power-down frequency storage off 1: Power-down frequency storage on Hundreds-bit: Action limit 0: Modify during running and stop 1: Modify during running, stay during stop 2: Modify during running, reset after stop	0010	0	0x409
F4.10	Keyboard Potentiometer Lower Limit	0.00V~5.00V	0.50V	•	0x40A
F4.11	Keyboard Potentiometer	0.00%~100.00%	0.00%	•	0x40B

	Lower Limit Percentage				
F4.12	Keyboard Potentiometer Upper Limit	0.00V~5.00V	4.50V	•	0x40C
F4.13	Keyboard Potentiometer Upper Limit Percentage	0.00%~100.00%	100.00%	•	0x40D
F4.14	1st-line Keyboard Display in Operation	In operation status: Monitoring parameters are cyclically displayed on the keyboard's first	1101	•	0x40E
F4.15	1st-line Keyboard Display in Operation	line, and are editable with the "SET" key, changing one item with each press. Power-down	0402	•	0x40F
F4.16	1st-line Keyboard Display at Stop	storage function is not available for the changed cyclic monitoring parameters, so the keyboard will	1100	•	0x410
F4.17	1st-line Keyboard Display at Stop	parameters, so the keyboard will display values ones- and tens-bit upon power-up. In stop status: Monitoring parameters are cyclically displayed on the keyboard's first line, and are editable with the "SET" key, changing one item with each press. Power-down storage function is not available for the changed cyclic monitoring parameters, so the keyboard will display values ones- and tens-bit upon power-up. Ones- to thousands-bit aligns with the C monitoring serial number, where C=Thousands- bit×10+Hundreds-bit, and C=Tens-bit×10+Ones-bit. Please refer to the monitoring code table for details. Ones- and tens-bit: First group display: 0000~6969 Hundreds- and thousands-bit: Second group display: 0000~6969	1100	•	0x411
F4.18	2nd-line Keyboard Display in Operation	Only available for dual-line keyboard, see description of F4.14~F4.17 for details	0201	•	0x412

F4.19	2nd-line Keyboard Display in Operation		1004	•	0x413
F4.20	2nd-line Keyboard Display at Stop		1100	•	0x414
F4.21	2nd-line Keyboard Display at Stop		1100	•	0x415
F4.22	Keyboard Display Setting	Ones-bit: Output frequency display selection 0: Target frequency (of the controlled motor) 1: Synchronized frequency (of the controlled motor) 1: Synchronized frequency (calculated drive output frequency) Tens-bit: Reserved Hundreds-bit: Power display Set the unit of C-10 [Output Power] 0: Power display in percentage (%) Display output power percentage, 100.0% corresponding to motor rated power. 1: Power display in kilowatt (kW) Display the actual output power. Thousands-bit: Reserved	0000	•	0x416
F4.23	Monitor Display Selection	Ones-bit: C-00~C-39 0: Normal 1: Debugging Thousands-bit: C-40~C-69 0: Drive internal parameter (staff only) 1: Drive internal parameter (staff only) 2: V/F internal parameter 3: V/C internal parameter 4: TUNE internal parameter 5: Control parameters for lifter 6: Control parameters for tower crane Hundreds-bit: Reserved Thousands-bit: Reserved	0050	•	0x417

F4.24	RPM Display Coefficient	Display coefficient for keyboard monitoring code C-05 [Mechanical Speed]. Range: 0.0%~500.0%	100.0%	•	0x418
F4.25	Power Display Coefficient	Display coefficient used to correct the keyboard monitoring code C-10 [Output Power]. Range: 0.0%~500.0%	100.0%	•	0x419
F4.26	Alarm Selection 1	Ones-bit: E.EEP fault (EEPROM storage failure) 0: alarm and free stop 1: alarm and continue running	0000	0	0x41A
F4.28	Fan	0: Fan runs after the drive is powered up1: according to temperature after shutdown.2: fan runs for the set the according to temperature after shutdown.	1	•	0x41C
F4.29	Dynamic Brake Enable	 0: OFF The AC drive does not control the motor with dynamic braking regardless of the bus voltage. 1: ON When the bus voltage exceeds the dynamic braking action voltage, AC drive carries out dynamic braking control on the motor. 	1	•	0x41D
F4.30	Dynamic Brake Voltage	When the AC drive DC bus voltage rises and exceeds [F4.30], the AC drive dynamic braking begins to act. Range: 115.0%~140.0%	128.0%	•	0x41E
F4.31	Dynamic Brake Utilization Rate	0.0%~100.0%	100.0%	•	0x41F
F4.32	PWM Carrier Frequency	Used to set the switching frequency of the drive's IGBT. Set this parameter to adjust electromagnetic noise and reduce leakage current. This function is mainly used to reduce the noise and vibration that may occur during AC drive operation. When the carrier frequency is higher, the	1.5kHz	*	0x420

			r		
		current waveform is more ideal			
		and the motor noise is low. It is			
		ideal for scenarios that require			
		silence. Despite this, the switching			
		loss of key components is up,			
		which causes increased heat			
		generation throughout the whole			
		machine, decreased efficiency,			
		and diminished output. At the			
		same time radio interference is			
		large, high carrier frequency			
		operation increases capacitive			
		leakage current. And false			
		operation or overcurrent may be			
		caused by the leakage protector			
		installation. During low carrier			
		frequency operation, it is the			
		opposite of the above			
		phenomenon.			
		When the user uses more than the			
		default carrier frequency, it needs			
		to be derated, and the derated			
		value is 5% for every 1kHz carrier			
		frequency increase.			
		Range: 0.7kHz~16.0kHz			
		Ones-bit: Carrier-temperature			
		correlation			
		0: Temperature uncorrelated			
		1: Temperature correlated			
		When the AC drive overheats, it			
		will automatically reduce the			
		carrier frequency; this function			
		reduces the switching loss of the			
	PWM Control	power devices and prevents			
F4.33	Mode	frequent alarms for overheating	1000	•	0x421
		faults of the AC drive.			
		Tens-bit: Carrier-output			
		frequency correlation			
		0: Output frequency uncorrelated			
		1: Output frequency correlated			
		When the association between			
		carrier and output frequency is			
		valid, AC drive can automatically			
		adjust the carrier frequency			

		according to the output frequency,		
		and this function can improve the		
		low-frequency performance of AC		
		drive and the mute effect of high		
		frequency		
		Hundrods bit: Dondom DWM		
		A. OFF		
		Motor Fixed Noise Frequency		
		1: ON		
		This method can make the		
		harmonic frequency spectrum of		
		the output voltage of the		
		frequency converter evenly		
		distributed in a wide frequency		
		range, and can effectively		
		suppress the high frequency noise		
		of the motor.		
		Thousands-bit: PWM		
		modulation mode		
		Select the PWM mode of the AC		
		drive		
		0: Only three-phase modulation		
		1: Two-phase/three-phase		
		modulation automatic switching		
F4	4.34~F4.37	Rese	rved	

6.6 Group F5: Motor Parameters

Code	Name	Description	Default	Prop erty	Address
F5.00	Motor Type	0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor (PM)	0	×	0x500
F5.01	Motor Pole No.	2~98	4	0	0x501
F5.02	Motor Rated Power	0.1kW~1000.0kW	Up to	*	0x502
F5.03	Motor Rated Frequency	0.01Hz~Max. frequency	Up to model	*	0x503
F5.04	Motor Rated Speed	1rpm~65000rpm	Up to	*	0x504
F5.05	Motor Rated	1V~1500V	Up to	*	0x505
F5.06	Motor Rated Current	0.1A~3000.0A	Up to model	*	0x506

F5.07	AM No-load Current	0.1A~3000.0A	Up to model	*	0x507
F5.08	AM Stator Resistance	0.01%~50.00%	Up to model	*	0x508
F5.09	AM Rotor Resistance	0.01%~50.00%	Up to model	*	0x509
F5.10	AM Stator Leakage Inductance	0.01%~50.00%	Up to model	*	0x50A
F5.11	AM Stator Inductance	0.1%~2000.0%	Up to model	*	0x50B
F5.20	Motor Parameter Auto-tuning	0: OFF 1: Dynamic auto-tuning 2: Static auto-tuning 3: Quick static auto-tuning	0	0	0x514
F	5.21~F5.29	Rese	erved		
F5.30	Speed Feedback or Encoder Type	Ones-bit: Encoder type 0: Common ABZ encoder 1: Rotary transformer (RT) Tens-bit: Encoder direction 0: Same 1: Opposite direction Hundreds-bit: Disconnection detection 0: OFF 1: ON Thousands-bit: Z-pulse correction 0: OFF 1: ON	0000	0	0x51E
F5.31	ABZ Encoder Line No.	1~10000	1024	0	0x51F
F5.32	Disconnection Detection Time	0.100s~60.000s	0.500s	•	0x520
F5.33	Rotary Transformer Pole No.	Set it according to the actual selected RT, usually with 2 poles. Range: 2~128	2	0	0x521
F5.34	Encoder Ratio Numerator	To enable closed-loop vector function, motor speed and position	1	0	0x522
F5.35	Encoder Ratio Denominator	can be derived indirectly via transmission ratio settings if the motor encoder is not directly mounted on the motor shaft. However, a rigid connection between the motor shaft and	1	0	0x523

		encoder is essential, and the			
		encoder must have sufficient lines			
		in synchronous motor control.			
		Range: 1~32767			
		If the motor encoder feedback			
		interference is large, the filter time			
		of the speed measurement can be			
		appropriately increased. But the			
	Encoder Speed	increase of the filter time will			
F5.36	Detection First-	reduce the response performance	1.0ms	•	0x524
	Order Filter Time	of the system. In some cases of			
		high requirements on the response			
		performance, long filter time will			
		lead to system oscillation.			
		Range: 0.0ms~100.0ms			
F	5.37~F5.38	Reserved			
		Ones-bit: SVC speed			
		measurement			
	PG Feedback	0: OFF			
F5.39	Frequency Control	1: ON	0001	•	0x527
	Word	Tens-bit: Reserved			
		Hundreds-bit: Reserved			
		Thousands-bit: Reserved			
F	5.40~F5.49	Rese	erved		

6.7 Group F6: Motor Vector Control

Code	Name	Description	Default	Prop erty	Address
F6.00	ASR Proportional Gain 1	auto-tuning to of proportional gain and integral time of ASR (speed loop): increasing the proportional gain can enhance the	10.00	•	0x600
F6.01	ASR Integral Time	system's dynamic response, but an excessively high proportional gain may lead to system oscillation. Decreasing the integral time can accelerate the system's dynamic response;	0.100s	•	0x601

F6.02	ASR Filter Time 1	however, an excessively short integral time may lead to system overshoot and a tendency toward oscillation. Start by setting the proportional gain high enough to avoid oscillation; then adjust the	0.0ms	•	0x602
F6.03	ASR Switching Frequency 1	integral time for a quick response with minimal overshoot. Note: If the proportional gain is too high and the integral time too short, an overvoltage fault may occur in the system (especially	0.00Hz	•	0x603
F6.04	ASR Proportional Gain 2	without an external braking resistor or unit) when the system is quickly started and accelerated to a high speed. This is due to energy feedback from regenerative braking during	10.00	•	0x604
F6.05	ASR Integral Time 2	deceleration after overshooting the set speed. This can be avoided by turning down the proportional gain and increasing the integral time. Adjust ASR (speed loop)	0.100s	•	0x605
F6.06	ASR Filter Time 2	proportional gain and integral time for high and low-speed operations with load: For fast response requirements, set ASR switching frequencies [F6.03] and [F6.07]	0.0ms	•	0x606
F6.07	ASR Switching Frequency 2	When the system is operated at low frequency, usually, by increasing the proportional gain and decreasing the integral time relatively can improve the dynamic response characteristics. The speed regulator parameters are generally adjusted in the following order: Select the appropriate switching frequencies ([F6.03] and [F6.07]). The first group of ASR (speed ring) parameters is valid when the output frequency is above the	0.0Hz	•	0x607

		switching frequency 1 [F6.03].			
		The second group of ASR (speed			
		loop) parameters is valid when the			
		output frequency is below the			
		switching frequency 2 [F6.07].			
		When the output frequency is			
		between switching frequency 1			
		[F6.03] and switching frequency 2			
		[F6.07], the parameter transitions			
		proportionally and linearly from			
		the first group to the second			
		group. Adjust the ASR (speed			
		loop) proportional gain2 [F6.04]			
		and ASR (speed loop) integral			
		time2 [F6.05] at low speeds to			
		prevent oscillations and achieve			
		optimal dynamic response at low-			
		frequency operations. Adjust the			
		ASR (speed loop) proportional			
		gain1 [F6.00] and ASR (speed			
		loop) integral time1 [F6.01] at			
		high speeds to prevent oscillations			
		from the system and achieve			
		optimal dynamic response. When			
		switching frequency 1 [F6 03] is			
		set to zero, only use the first group			
		of speed loop parameters			
		Pange:			
		Kange.			
		$F6.00.0.01 \sim 100.00$			
		F6.01: 0.000s~0.000s			
		F6.02: 0.00Hz F6.07			
		F6.03: 0.00Hz~F6.07			
		F6.04: 0.01~100.00			
		F6.05: 0.000s~6.000s			
		F6.06: 0.0ms~100.0ms			
		F6.06: 0.00Hz~Max. frequency			
		F6.07: 0.00Hz~F6.03			
F6.08	Drive mode Torque	Set the output upper limit of the	180.0%	•	0x608
	Limit	motor torque. The percentage			

F6.09	Generation Mode Torque Limit	corresponds to the rated torque of the motor, valid for AM, PM in under SVC and FVC modes. The motor torque output is also limited by the AC drive output current limit point [FA.01] and the output power [F6.27]. Range: 0.0%~250.0%	180.0%	•	0x609
F6.10	Current Loop D- axis Proportional Gain	Set the PI parameters of the current loop for AM and PM vector controls. In vector control,	1.000	•	0x60A
F6.11	Current Loop D- axis Integral Gain	if the speed and current oscillations and instability occur,	1.000	•	0x60B
F6.12	Current Loop Q- axis Proportional Gain	the gains can be accordingly reduced for stability; on the other hand, increasing the gains helps to	1.000	•	0x60C
F6.13	Current Loop Q- axis Integral Gain	improve the dynamic response of the motor. Range: 0.001~4.000	1.000	•	0x60D
F6.15	Drive Mode Vector Slip Compensation	When AM vector control is valid, the slip compensation coefficient is used to adjust the motor accuracy at a stable speed in the open-loop vector control. The value should be increased when	100.0%	•	0x60F
F6.16	Vector Control Slip Compensation	the motor speed in the with-load cases is lower than the set value versa. For FVC mode, it is used to adjust the linearity of the motor output torque and output current. Please reduce it when the deviation of the the rated loads between motor's and the nameplate's is large, vice versa. Range: 0.0%~250.0%	0.0%	•	0x610
F6.18	Position Compensation Control	For FVC, with this function, the motor can realize zero servo function at zero speed, and the rigidity of the motor can be increased when running at non- zero speed. When the compensation control is enabled, the compensation gain is used to	0	0	0x612

		adjust the compensation intensity, and the compensation clipping is used to limit the compensation amplitude, relative to the drive maximum output frequency and is effective below the compensation range frequency, relative to the drive maximum output frequency. 0: OFF 1: ON			
F6.19	Compensation Gain	For FVC, with this function, the motor can realize zero servo function at zero speed, and the	0.0%	0	0x613
F6.20	Compensation Limit	increased when running at non- zero speed. When the compensation control is enabled,	0.0%	0	0x614
F6.21	Compensation Range	the compensation gain is used to adjust the compensation intensity, and the compensation clipping is used to limit the compensation amplitude, relative to the drive maximum output frequency and is effective below the compensation range frequency, relative to the drive maximum output frequency. Range: F6.19: 0.0%~250.0% F6.20: 0.0%~100.0% F6.21: 0.0%	10.0%	0	0x615
F6.22	Overexcitation Brake Gain	For AM in FVC , and faster deceleration control can be realized without reporting	100.0%	0	0x616
F6.23	Overexcitation Brake Limit	overvoltage through overexcitation function. The larger the overexcitation gain, the faster the control response. Compared with the rated excitation and limiting of motor, the larger the braking limit, the better the braking effect. However, excessive limit will increase the temperature rise when the motor decelerates, and	100.0%	0	0x617

		the value can be appropriately increased when the heat dissipation of the motor is good. Range: 0.0%~500.0%			
F6.24	Vector Control ECO Function	For AM in vector control, the ECO function through the	0	0	0x618
F6.25	Energy-saving Gain	analysis of torque output, automatically reduce the output	50.0%	•	0x619
F6.26	Energy-saving Low-pass Filter	current, so as to reduce the motor heating loss, in order to achieve energy-saving effect. Range: F6.24: 0: OFF 1: ON F6.25: 0.0%~80.0% F6.26: 0.000s~6.000s	0.010s	•	0x61A
F6.27	Motor Constant Power Limit	It refers to the size of the controlled motor's shaft output power under vector control. When the motor is running at low and medium speeds, the motor output power is small, and at this time the motor torque is mainly limited by the torques in drive/power generation modes [F6.08~F6.09]. When it is running at high speed and above the rated speed, the output power is limited by [F6.27], and the motor torque output decreases inversely proportional to the speed. Range: 0.0%~250.0%	200.0%	•	0x61B
F6.28	Motor Flux- Weakening Current Upper Limit	For AM and PM vector control modes, if the motor running speed is above the rated speed, or if the	60.0%	0	0x61C
F6.29	Motor Flux Weakening Feed- Forward Gain	bus voltage is low and the motor running speed is near the rated speed, the AC drive needs to adopt	10.0%	•	0x61D
F6.30	Motor Flux Weakening Gain	motor for the motor, so as to make the motor speed track the set speed. [F6.28] can be used to set the upper limit of demagnetization	10.0%	•	0x61E

	current and is valid for PM. But an irreversible demagnetization of the motor will occur if the flux weakening current is too large. Normally, this will not happen if the field-weakening current is within the rated range. Set the flux-weakening control adjustment parameters [F6.29~F6.30] for debugging when instability occurs in the process. Range: F6.28: 0.0%~250.0% F6.30: 0.0%~500.0%	
F6.31~F6.79	Rese	erved

6.8 Group F8: Motor SVC1 Parameters

Code	Name	Description	Default	Prop erty	Address
F8.00	Linear V/F Curve Selection	Select the type of V/F curve according to different load characteristics. 0: Linear V/F 1~9: 1.1~1.9 power V/F torque drop curves respectively, illustrated below: 10: Square V/F curve 11: Custom V/F curve Refer to F8.01~F8.10 and F8.25~F8.34; The linear V/F curve by default is suitable for most general-purpose applications. The multiple power curve and square V/F curve are generally used for fans or pumps. It can reduce the high-frequency current and achieve energy-saving effect.	0	Ο	0x800
The Schema	tic Diagram of Linear V	//F And Falling Torque Curves			

71

Outpu Motor ra	t voltage	ear V/F curve astant torque) Reduced torque curve		Output fr	equency
		Motor	rated freq.		
F8.01	V1 (Self-set Voltage)		4.5%	0	0x801
F8.02	F1 (Self-set Frequency)	Customize the V/F curve using [F8.01~F8.10]. If FF.02's	0.0%	0	0x802
F8.03	V2 (Self-set Voltage)	hundreds-bit is set to 1, it specifies the forward operation	5.6%	0	0x803
F8.04	F2 (Self-set Frequency)	curve only. The reverse operation curve is defined by	1.0%	0	0x804
F8.05	V3 (Self-set Voltage)	[F8.25~F8.34]. Voltages V1-V5 in the custom curve (where 100.0%	15.6%	0	0x805
F8.06	F3 (Self-set Frequency)	equals rated motor voltage) match frequency points F1-F5 (where	10.0%	0	0x806
F8.07	V4 (Self-set Voltage)	frequency). The group parameter	24.0%	0	0x807
F8.08	F4 (self-setting frequency)	conditions:	20.0%	0	0x808
F8.09	V5 self-setting voltage	0≤V1≤V2≤V3≤V4≤V5≤100.0% Pange: 0.0%~100.0%	100.0%	0	0x809
F8.10	F5 (Self-set Frequency)	Kange. 0.070~100.070	100.0%	0	0x80A
Self-Set V/	F Curve			•	

Output	volt.				
	V5 V4 V3 V2 V1 0 F1	F2 F3 F4	F5	Outț	out freq. ►
F8.11	Output Voltage Percentage	The output voltage regulation coefficient of the AC drive. This function is used to adjust the output voltage of the AC drive for different V/F characteristics. Range: 25.0%~120.0%	100.0%	0	0x80B
F8.12	Torque boost	Torque boost: when [F8.12] is set	0.0%	•	0x80C
F8.13	Torque boost cutoff frequency	to 0.0, it is the automatic torque boost, which automatically compensates the output voltage according to the size of the load; when [F8.12] is set to any other value, it is the fixed torque boost, which compensates the output voltage according to the output frequency to improve the low- frequency torque characteristic of AC drive. Please select the torque boost according to the load size. If the torque boost is too high during low frequency operation, the motor may be overexcited and overheated after long time operation, and in some serious cases, the AC drive may be protected against overcurrent faults or the AC drive may not be able to start normally.	100.0%	•	0x80D

	Note: When parameter [F8.00] is set to "11" (customized V/F curve), the torque boost set in [F8.12] is invalid, and AC drive runs according to the customized V/F curve. Range: F8.12: 0.0%~30.0% F8.13: 0.0%~100.0%			
--	--	--	--	--

Torque Boo	st Schematic				
Output vol	lt. 🛉	Output volt. 🛉			
Motor rated vo		Motor rated volt.			
Torque boost vo	e. It. 0 Torque boost cut-off freq.	Torque boost volt. Output freq. Motor rated freq.	Forque boost cut-off freq.	C Motor rat	output freq. → ed freq.
F8.14	Slip Compensation Gain	This function enables the output frequency of the drive to automatically change with the motor load within the set range to dynamically compensate the motor slip frequency, so as to keep the motor at a constant speed, thus reducing the effect of load	0.0%	•	0x80E
F8.15	Slip Compensation Range	variation on the motor speed. The low frequency torque characteristics of the drive can be significantly improved when this function is used with the automatic torque boost function. The 100.0% of slip frequency compensation	100.0%	•	0x80F
F8.16	Slip Compensation Filter Time	corresponds to the motor rated slip. But a too large setting may cause the motor speed to exceed the set value, so a limit needs to be set in [F8]. Slip compensation filter time Define the size of the filter applied to the slip compensation to remove interference signals. The longer the filter time, the stronger the anti-interference ability, but the response becomes slower; the shorter the filter time, the weaker the anti-interference ability, but the response becomes faster. Range: F8.14: 0.0%~200.0%	0.200s	•	0x810

	F8.15: 0.0%~300.0%		
	F8.16: 0.000s~6.000s		

Slip Compensation Schematic						
I ↑	Motor speed					
0	50%	100% 150%	Ou	tput cı	urrent ►	
F8.17	Oscillation Suppression Gain	0.0%~900.0%	100.0%	•	0x811	
F8.18	Oscillation Suppression Filter Coefficient	0.0~100.0	1.0		0x812	
F8.19	Automatic ECO control	0: OFF 1: ON	0	0	0x813	
F8.20	Lower Limit of the Step-Down Frequency	0.00Hz~50.00Hz	15.00Hz	0	0x814	
F8.21	Lower Limit of the Step-Down Voltage	20.0%~100.0%	50.0%	0	0x815	
F8.22	Step-Down Voltage Regulation Rate	0.000V/ms~ 0.200V/ms	0.010 V/ms	•	0x816	
F8.23	Step-Down Voltage Recovery Rate	0.000V/ms~2.000V/ms	0.200 V/ms	•	0x817	
F8.24		Reserved				
F8.25	Reverse operation V1 (Self-set Voltage)	Use [F8.25~F8.34] to set the custom V/F curve for reverse operation. Define voltages V1-V5	5.6%	0	0x819	
F8.26	Reverse Operation F1 (Self-set Frequency)	(100.0% equals rated motor voltage) at frequency points F1-F5 (100.0% equals rated motor	0.0%	0	0x81A	

	r			-	
F8.27	Reverse Operation V2 (Self-set Voltage)	frequency). Set frequencies in the V/F curve to correspond to voltages V1-V5. The group	5.6%	0	0x81B
F8.28	Reverse Operation F2 (Self-set Frequency)	parameter settings must satisfy the following conditions: 0≤F1≤F2≤F3≤F4≤F5≤100.0%;	1.0%	0	0x81C
F8.29	Reverse Operation V3 (Self-set Voltage)	0≤V1≤V2≤V3≤V4≤V5≤100.0% Range: 0.0%~100.0%	11.6%	0	0x81D
F8.30	Reverse Operation F3 (Self-set Frequency)		10.0%	0	0x81E
F8.31	Reverse Operation V4 (Self-set Voltage)		21.0%	0	0x81F
F8.32	Reverse Operation F4 (Self-set Frequency)		20.0%	0	0x820
F8.33	Reverse Operation V5 (Self-set Voltage)		100.0%	0	0x821
F8.34	Reverse Operation F5 (Self-set Frequency)		100.0%	0	0x822
F8.35	Stator Compensation Thermistor Factor	100.0%~150.0%	110.0%	•	0x823
F8.36	Compensation Initial	0.0%~2.0%	0.0%	•	0x824
F8.37	Auto Torque Boost Proportional Gain	0.00~1.00	0.06	•	0x825
F8.38	Auto Torque Boost Integral Gain	0.00~1.00	0.01	•	0x826
F8.39	Overcurrent Suppression Cut- off Frequency	0.00Hz~10.00Hz	2.00Hz	•	0x827

6.9 Group FA: Protection and Fault Parameters

erty

FA.00	Overcurrent Suppression	function prevents fault tripping by capping the load current to a predetermined point by real-time monitoring on load current in operation, ideal for loads with large inertia or significant changes. 0: ON for whole process 1: Suppression on during acceleration and deceleration and off during constant speed 2: OFF	2	•	0xA00
FA.01	Overcurrent Suppression Point	It is the set current limit (AC drives control the size of the output current by stopping acceleration, deceleration, or lowering or raising the output frequency). Via this parameter, the response speed of the overcurrent suppression can be adjusted. Note: This function may prolong	180.0%	•	0xA01
FA.02	Overcurrent Suppression Gain	the acceleration and deceleration time. When AC drive is starting or stopping, if the output frequency can not reach the given frequency according to the desired acceleration and deceleration time in case of high current, it indicates that the current limiting function is on, then please reduce the load or adjust the related parameter. Range: FA.01: 0.0%~300.0% FA.02: 0.0%~500.0%	100.0%	٠	0xA02
FA.03	Current Hardware Protection	Ones-bit: CBC current limiting Through hardware protection, CBC current limiting can limit the rise of current to some extent, so that the current does not exceed the protection value of AC drive, avoiding overcurrent fault and shutdown. 0: OFF 1: ON	0000	0	0xA03

		Tens-bit: OC protection			
		interference			
		When this function is on, the AC			
		drive will intelligently diagnose			
		the E.OC alarm, exclude the			
		interference, and only alarm the			
		real fault signal. This function may			
		delay the alarm time, so please use			
		it with caution.			
		0: OFF			
		1: L1 interference suppression			
		2: L2 interference suppression			
		Tens-bit: SC protection			
		interference			
		When this function is on, the AC			
		drive will intelligently diagnose			
		the E.SC alarm, exclude the			
		interference, and only alarm the			
		real fault signal. This function may			
		delay the alarm time, so please use			
		it with caution.			
		0: OFF			
		1: L1 interference suppression			
		2: L2 interference suppression			
FA.04		Reserved			
		It is a backup and supplement to			
		software protection to protect the			
	Bus Overvoltage	bus voltage by hardware, which			
FA.05	Hardware	improves the reliability of	0	0	0xA05
	Protection	equipment.			
		0: OFF			
		1: ON			
		Ones-bit: Overvoltage			
		suppression			
		0: OFF			
		1: ON only during deceleration			
	Duchor	2: ON during both acceleration and			
FA 06	Overvoltage	deceleration	0000	0	0* 4.06
1A.00	Suppression	Select whether to enable the	0000		UXAUU
	Suppression	voltage suppression function when			
		the AC drive decelerates. If this			
		function is on, the AC drive will			
		slow down or stop decelerating			
		when its bus voltage reaches or			

		exceeds the value set in FA.07			
		during deceleration, so as to ensure			
		that the AC drive does not trip the			
		over-voltage protection due to the			
		excessive bus voltage.			
		Select whether to enable the			
		voltage suppression function when			
		the AC drive accelerates. When the			
		AC drive acceleration bus voltage			
		AC drive acceleration bus voltage			
		FA 07 the AC drive will			
		FA.07, the AC unive will			
		automatically adjust the operation			
		frequency to suppress the bus			
		voltage increase, so as to ensure			
		that the AC drive does not cause			
		over-voltage protection due to the			
		excessive bus voltage. This			
		function is ideal for eccentric			
		loads.			
		Tens-bit: Overexcitation			
		0: OFF			
		1: ON			
		Hundreds-bit: Reserved			
		Thousands-bit: Reserved			
		Range: 0000~0012			
	Busbar	when In AC drive operation, if the			
FA.07	Overvoltage	bus voltage reaches or exceeds the	128.0%	0	0xA07
	Suppression Point	bus overvoltage suppression point			
		set in FA.07, the AC drive will			
		automatically adjust the operation			
		frequency to suppress the bus			
		voltage increase, so as to ensure			
		that the AC drive does not trigger			
		over-voltage protection due to the			
	Bus Overvoltage	excessive bus voltage. FA.08	100.00/		0 100
FA.08	Suppression Gain	adjustment can enhance the	100.0%	0	0xA08
	**	overvoltage suppression function.			
		Setting FA.08 to 0 turns off this			
		function, which is valid for all			
		motor control modes.			
		Kange: 150.0%			
		FA.07: 110.0%~150.0%			
O 14	<u> </u>	FA.08: 0.070~300.070			·
Overvoltage	Suppression Schematic	: Diagram			

		be appropriately lowered to ensure that the AC drive works normally. Note: The output torque of the motor will drop when the grid voltage is too low. For constant power loads and constant torque loads, an excessively low grid voltage will increase the AC drive I/O currents, which will reduce the reliability of the AC drive operation. Range: 60.0%~90.0%			
		Ones-bit: Output phase loss			
		0: OFF			
		1: ON			
		E.oLF [Output phase failure] is			
FA.15		reported when the motor runs with			
		phase loss.			
	Phase Loss	Tens-bit: Input phase loss	0031	0	0xA0F
	1 1100 2000	protection	0051	0	UXAUI
		0: OFF			
		1: Alarm (A.iLF)			
		2: Report error (E.iLF)			
		3: Alarm for stopping, report error			
		for running			
		Hundreds-bit: Reserved			
		Thousands-bit: Reserved			
		The current entering the protection			
		curve = (actual motor			
		current/motor overload protection			
		coefficient) \times 100%, so increasing			
		[FA.16] can improve the overload			
		the motor overload warming			
	Motor Overload	coefficient and when the motor			
FA.16	Protection	overload degree reaches the	100.0%	0	0xA10
	Coefficient	coefficient set in [FA.16], AC drive			
		will alarm through the terminal			
		outputs. Please refer to the			
		function of Y-terminal for details.			
		Note: When an AC drive with			
		multiple motors runs in parallel,			
		the thermal relay protection			

		1: report error			
EA 19	Load detection	Motor output current serves as the	120.00/	0	0 4 12
гА.18	warning1	load warning threshold, with	130.0%	0	0XA12
FA 10	Load detection	100.0% equivalent to the rated	5 Os	0	0x A 13
14.17	warning time1	motor current. Compare it against	5.03	Ŭ	07413
FA 20	Load warning	threshold [FA.18/FA.20] within	20.0%	0	0xA14
111.20	detection level2	time [FA.19/FA.21], act as	20.070	_	0ALTI I
		specified in [FA.17], and execute			
		warnings through terminal outputs,			
		detailed under Y-terminal			
EA 21	Load warning	Pange:	0.5-	0	0-: 4.15
FA.21	detection time2	FA 18: 0.0%, 200.0%	0.58	0	0XA15
		$FA_{10}: 0.076 \sim 200.076$			
		FA 20: 0.0%~200.0%			
		FA 21: 0.0s~60.0s			
FA 22		Reserved			
111.22		Ones bit: detection selection			
		0: Detection off			
		1: Detection on			
FA.23		1. Detect only at constant speed			
		2. keen detecting			
	Excessive speed	2. Reep deteeting			
	deviation	Tens-bit: Alarm selection	0001	0	0xA17
	protection				
	I	0: Report an error			
		*			
		1: Alarm and continue running			
		Hundreds-bit and thousands-			
		bit: Reserved			
	Excessive Speed	For vector control, when the			
EA 24	Deviation	deviation of the speed feedback	10.0%	0	0-110
1A.24	Detection	and speed setting is greater than		Ŭ	UXA10
	Threshold	the detection threshold [FA.24]			
		within the detection time [FA.25],			
		the AC drive considers that the			
		detection deviation is too large,			
	Excessive Sneed	and takes the corresponding			
FA 25	Deviation	action according to [FA.23]. The	2.02	0	0xA19
111.20	Detection Time	speed deviation detection	2.05	~	UM II /
	2 clouden rinne	threshold of 100.0% corresponds			
		to the maximum frequency.			
		Range:			
		FA.24: 0.0%~60.0%			

		FA.25: 0.0s~60.0s				
FA.26	Overspeed Protection Action	Ones-bit: Detection selection				
		1: Detection on 1: Detect only at constant speed	0002			
		2: Detection on		0	0xA1A	
		Tens-bit: Alarm selection				
		0: Report error				
		1: Report a warning and continue				
		running				
		Hundreds- and thousands-bit:				
		Reserved				
FA.27	Overspeed	When the speed feedback is				
	Detection	greater than the detection	110.0%	0	0xA1B	
	Threshold	threshold [FA.27] within the				
		detection time [FA.28], the AC				
FA.28	Overspeed Detection Time	drive considers it as a motor				
		overspeed error and takes the				
		corresponding action according to				
		[FA.26]. The overspeed				
		detection threshold of 100%	0.050s	0	0xA1C	
		corresponds to the maximum				
		frequency.				
		Range:				
		FA.27: 0.0%~150.0%				
	C (111	FA.28: 0.000s~2.000s				
FA.29	Current Imbalance	If the ratio of the maximum phase	180.00/	•	0	
	Threshold 1	current to the minimum current is	180.0%		UXAID	
FA.30	Current Imbalance	greater than FA.29/FA.31 and the				
	Detection Times 1	FA $\frac{30}{FA}$ $\frac{32}{FA}$ the output	30	٠	0xA1E	
FA.31	Current Imbalance	unbalance fault E of E	125.0%			
	Detection	(FA 29=1404) is reported		•		
	Threshold 2	It is invalid when the threshold				
FA.32	Current Imbalance Detection Times 2	setting is less than 110.0%.				
		FA.29/30 for SVC1 and FA.31/32				
		for vector control.	10	•		
		FA.29/FA.31 Range:				
		0.0%~400.0%				
		FA.30/FA.32 Range:				
-------------	------------------------------------	--	------	---	--	--
1	EA 32, EA 36	Deserved				
FA.55~FA.50		Failura self recovery times:	lveu			
FA.37	Recovery Times	0: OFF	0	0		
FA.38	Failure Self- Recovery Interval	Automatic reset function is off, and it can only be reset manually. 1~5: ON The function is on, and 1~5 is the number of times of self-recovery after failure (defined as the maximum number of times self- recovery is possible after each failure); During operation, the AC drive may be malfunctioned and stopped due to load fluctuation, grid voltage fluctuation and other accidental factors. To maintain system operation continuity, the AC drive is allowed to automatically reset and recover from operational issues such as overload, overcurrent, system anomalies, overvoltage, and undervoltage. The AC drive resumes operation at the speed tracking start method in the self- recovery process. If the AC drive does not successfully resume operation within the set number of times, fault protection is enabled, and the output is stopped and the fault recovery times to 1 as multiple consecutive fault restarts may cause damage to the AC drive. Whether or not to enable the output terminal action during fault self-recovery can be selected, see [F2.45~F2.47] for details.	1.0	0		

		Failure self-recovery interval: this parameter represents the wait time between an AC drive failure and each subsequent reset. Note: 1. This function is only valid for faults such as overload, overcurrent, system abnormality, overvoltage, and undervoltage during operation, and is invalid for other faults; 2. The AC drive will not be reset until the fault is cleared. Note: It is crucial to consider the start-up characteristics of mechanical equipment before operation, especially in cases where it cannot be started with load, or when the AC drive requires an immediate alert in the absence of output. Please use this feature with caution.		
		Range of FA.3 /: 0~5		
FA.39	Diagnostic Information during Fault	See the fault diagnosis code table for details	 ×	0xA27
FA.40	Fault Type	See the fault diagnosis code table for details	 ×	0xA28
FA.41	Operation Frequency during Fault	0.00Hz~Max. frequency	 ×	0xA29
FA.42	Output Voltage during Fault	0V~1500V	 ×	0xA2A
FA.43	Output Current during Fault	0.1A~2000.0A	 ×	0xA2B
FA.44	Bus Voltage during Fault	0V~3000V	 ×	0xA2C
FA.45	Module Temperature during Fault	0°C~100°C	 ×	0xA2D
FA.46	Fault Drive Status	Ones-bit: Operation direction 0: FWD 1: REV Tens-bit: Operating status	 ×	0xA2E

		0: Stop 1: Acceleration		
		2: Deceleration 3: Constant		
		speed		
		Hundreds-bit: Reserved		
		Thousands-bit: Reserved		
EA 47	Input Terminal X	See the input terminal status	×	0 4 2E
ГА.47	Status during Fault	figure	 ^	UXA2F
EA 49	Output Terminal	See the output terminal status	×	0.420
FA.40	Status during Fault	figure	 ^	0XA50
EA 40	Previous Fault	See the fault diagnosis code table	×	0 4.21
ГА.49	Туре	for details	 ~	UXA31
	Previous Fault			
FA.50	Operation	0.00Hz~Max. frequency	 ×	0xA32
	Frequency			
D4 61	Previous Fault	and 1 50001	~	0, 1, 22
FA.51	Output Voltage	0V~1500V	 Â	0xA33
E4.62	Previous Fault	0.1.4. 2000.0.4	~	0.424
FA.52	Output Current	0.1A~2000.0A	 Â	0xA34
EA 52	Previous Fault Bus	01/ 20001/	~	0 4.25
FA.53	Voltage	0 v~3000 v	 Â	0.1.1.3.5
FA 54	Previous Fault	0% 100%	×	0x A 36
FA.34	Module Temp.	0.5~100.5	 ^	0XA36
		Ones-bit: Operation direction		
		0: FWD 1: REV		
		Tens-bit: Operating status		
	AC Drive Status	0: Stop 1:		
FA.55	during Previous	Acceleration	 ×	0xA37
	Fault	2: Deceleration 3: Constant		
		speed		
		Hundreds-bit: Reserved		
		Thousands-bit: Reserved		
	Input Terminal			
FA.56	Status at Previous	See the input terminal status	 ×	0xA38
	Fault	figure		
D	Output Terminal at	See the output terminal status		0
FA.57	Previous Fault	figure	 ×	0xA39
D 4 C 0	Previous two fault	See the fault diagnosis code table		0.101
FA.58	type	for details	 ×	0xA3A
	Previous three fault	See the fault diagnosis code table		
FA.59	type	for details	 ×	0xA3B

6.10 Group FB: Step Acceleration/Deceleration

Code	Name	Description	Default	Prop erty	Address
FB.00	Acceleration Section 1	0.1%~FB.02	10.0%	•	0xB00
FB.01	Step Acceleration Time 1	0.00s~30.00s	0.50s	•	0xB01
FB.02	Acceleration Section 2	FB.00~FB.04	20.0%	•	0xB02
FB.03	Step Acceleration Time 2	0.00s~30.00s	1.00s	•	0xB03
FB.04	Acceleration Section 3	FB.02~FB.06	30.0%	•	0xB04
FB.05	Step Acceleration Time 3	0.00s~30.00s	1.50s	•	0xB05
FB.06	Acceleration Section 4	FB.04~FB.08	40.0%	•	0xB06
FB.07	Step Acceleration Time 4	0.00s~30.00s	1.10s	•	0xB07
FB.08	Acceleration Section 5	FB.06~FB.10	50.0%	•	0xB08
FB.09	Step Acceleration Time 5	0.00s~30.00s	1.30s	•	0xB09
FB.10	Acceleration Section 6	FB.08~FB.12	60.0%	•	0xB0A
FB.11	Step Acceleration Time 6	0.00s~30.00s	1.50s	•	0xB0B
FB.12	Acceleration Section 7	FB.10~FB.14	80.0%	•	0xB0C
FB.13	Step Acceleration Time 7	0.00s~30.00s	3.40s	•	0xB0D
FB.14	Acceleration Section 8	FB.12~300.0%	100.0	•	0xB0E
FB.15	Step Acceleration Time 8	0.00s~30.00s	3.80s	•	0xB0F
FB.16	Deceleration Section 1	0.1%~FB.18	6.0%	•	0xB10
FB.17	Step Deceleration Time 1	0.00s~30.00s	2.00s	•	0xB11
FB.18	Deceleration Section 2	FB.16~FB.20	20.0%	•	0xB12

FB.19	Step Deceleration Time 2	0.00s~30.00s	2.00s	•	0xB13
FB.20	Deceleration Section 3	FB.18~FB.22	30.0%	•	0xB14
FB.21	Step Deceleration Time 3	0.00s~30.00s	1.50s	•	0xB15
FB.22	Deceleration Section 4	FB.20~FB.24	40.0%	•	0xB16
FB.23	Step Deceleration Time 4	0.00s~30.00s	1.50s	•	0xB17
FB.24	Deceleration Section 5	FB.22~FB.26	50.0%	•	0xB18
FB.25	Step Deceleration Time 5	0.00s~30.00s	1.50s	•	0xB19
FB.26	Deceleration Section 6	FB.24~FB.28	60.0%	•	0xB1A
FB.27	Step Deceleration Time 6	0.00s~30.00s	1.50s	•	0xB1B
FB.28	Deceleration Section 7	FB.26~FB.30	80.0%	•	0xB1C
FB.29	Step Deceleration Time 7	0.00s~30.00s	2.40s	•	0xB1D
FB.30	Deceleration Section 8	FB.28~300.0%	100.0%	•	0xB1E
FB.31	Step Deceleration Time 8	0.00s~30.00s	2.00s	•	0xB1F

6.11 Group FC: Multi-Segment Speed

Code	Name	Description	Default	Property	Address
EC 00	PLC Multi-	0.0011- 600.0011-	25 0011-	•	0 600
FC.00	Segment Speed 1	0.00Hz~600.00Hz	23.00HZ	•	0xC00
EC 01	PLC Multi-	0.0011- (00.0011-	5 0011-		0
FC.01	Segment Speed 2	0.00Hz~600.00Hz	5.00HZ	•	0xC01
FC 02	PLC Multi-	0.00Hz~600.00Hz	40.0011		0
FC.02	Segment Speed 3		40.00Hz	•	0xC02
FG 02	PLC Multi-		40.00Hz		0
FC.03	Segment Speed 4	0.00Hz~600.00Hz		•	0xC03
FC 04	PLC Multi-	0.0011- (00.0011-	50.00Hz		0.004
FC.04	Segment Speed 5	0.00Hz~600.00Hz		•	0xC04
EC 05	PLC Multi-	0.0011 (00.0011	40.0011		0.005
FC.05	Segment Speed 6	0.00Hz~600.00Hz	40.00Hz	•	0xC05

FC.06	PLC Multi-	0.00Hz~600.00Hz	60.00Hz	•	0xC06	
FC.07	PLC Multi-	0.00Hz~600.00Hz	20.00Hz	•	0xC07	
	Segment Speed 8					
FC.08	PLC Multi-	0.00Hz~600.00Hz	10.00Hz	•	0xC08	
1 0.00	Segment Speed 9	0.00112 000.00112	10.00112		04000	
FC 09	PLC Multi-	0.00Hz~600.00Hz	20.00Hz	•	0xC09	
1 0.09	Segment Speed 10		20.00112		0.000	
FC 10	PLC Multi-	0.00Hz~600.00Hz	30.00Hz	•	0xC0A	
10.10	Segment Speed 11	0.00112-000.00112	50.0011Z		UACUA	
FC 11	PLC Multi-	0.00Hz 600.00Hz	40.0011-7	•	0vC0P	
rc.m	Segment Speed 12	0.00112~000.00112	40.0011Z	-	UXCOD	
FC 12	PLC Multi-	0.00117-600.00117	5.0011-7		0xC0C	
FC.12	Segment Speed 13	0.00HZ~000.00HZ	3.00HZ	-	UXCUC	
EC 12	PLC Multi-	0.00Hz, 600.00Hz	40.0011-7	•	0rC0D	
FC.15	Segment Speed 14	0.00HZ~000.00HZ	40.00HZ	•	UXCOD	
FC.14	PLC Multi-	0.00Hz~600.00Hz	80.0011-7		0	
	Segment Speed 15		80.00HZ	•	OXCOE	
FC	C.15~FC.45	Reserved				
FC.46	Antspeed Gear 1	0.00Hz~50.00Hz	3.00Hz	•	0xC2E	
FC.47	Antspeed Gear 2	0.00Hz~50.00Hz	4.00Hz	•	0xC2F	
FC.48	Antspeed Gear 3	0.00Hz~50.00Hz	5.00Hz	٠	0xC30	
FC.49	Antspeed Gear 4	0.00Hz~50.00Hz	6.00Hz	•	0xC31	
FC.50	Antspeed Gear 5	0.00Hz~50.00Hz	7.00Hz	•	0xC32	
FC.51	Antspeed Selection	0: For integrated tower crane (FC.46~FC.50) 1: Single drive antspeed 1 (Gear frequency*FC.52) 2: Single drive antspeed 2	0	0	0xC33	
EC 52	Antspeed	(FC 53) 0.0%, 100.0%	20.0%	•	0xC24	
FC.52	1 mapeed	0.070~100.070	20.070	•	03034	
FC.53	Antspeed Frequency	0.00Hz~50.00Hz	5.00Hz	•	0xC35	

6.12 Group FD: Communication Control

Code	Name	Description	Default	Property	Address
FD.00	Master/Slave	See Appendix II for details on	0000	0	0xD00
	selection	Modbus communication when		_	

		selecting a drive to be a master	-		
		or slave.			
		Ones-bit: Modbus			
		communication			
		0: Slave			
		The drive acts as a slave, and the			
		address is determined by			
		[FD.01]. At this time, the drive			
		receives the command from the			
		master on the communication			
		network and according to the			
		[FD.08] by which set whether to			
		reply to data when selecting			
		write operation. The delay time			
		of reply instruction is			
		determined by [FD.05].			
		1: Master			
		As a master, the drive sends the			
		master data to the			
		communication network by			
		broadcasting commands, and all			
		the slave computers receive the			
		master commands. The master			
		sends data by [FD.09].			
		Tens-bit: Reserved			
		Hundreds-bit: Reserved			
		Thousands-bit: Reserved			
		Note:			
		When the AC drive functions as			
		the network master, all			
		connected network slaves must			
		also be VEICHI AC drives to			
		ensure proper network			
		integration. The master sends			
		the broadcast data through the			
		customized free protocol.			
		19200bps			
		[FD.03] 0: Data format (N, 8, 1),			
		no parity, data bit: 8, stop bit: 1			
		This parameter defines the			
	485	communication address of the			
FD.01	Communication	machine when it is used as a	1	0	0xD01
	Address	Modbus communication slave.			
		This parameter is invalid if the			

FD.02	Communication Baud Rate	Ones-bit: Modbus communication 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps Tens-bit: CAN communication 0: 20K 1: 50K 2: 100K 3: 125K 4: 250K 5: 500K 6: 1M Repower-up is required after modification	0005	0	0xD02
		Personwood			
FD.03	Modbus Data Format	Reserved 0: (N, 8, 1) no parity, Data bits: 8 Stop bit: 1 1: (E, 8, 1) even parity, Data bit: 8 Stop bit: 1 2: (O, 8, 1) odd parity, Data bits: 8 Stop bit: 1 3: (N, 8, 2) no parity, Data bits: 8 Stop bit: 2 4: (E, 8, 2) even parity, Data bits: 8 Stop bit: 2 5: (O, 8, 2) odd parity, Data bits: 8 Stop bit: 2 5: (O, 8, 2) odd parity, Data bits: 8 Stop bit: 2 5: (O, 8, 2) odd parity, Data bits: 8 Stop bit: 2	0	0	0xD03
FD.04	Communication Ratio	The data in the communication address 0x2000 or 0x3000 sent from the host computer multiplied by this parameter is used as the communication	1.00	•	0xD04

FD.05	Modbus Response Delay	This parameter defines the interval time between the end of data reception and the end of sending response data to the host computer when the AC drive is used as a Modbus communication slave. If the response delay time is less than the system processing time, the	0ms	•	0xD05
FD.06	Modbus Timeout Time	If the interval between communications exceeds the timeout period, it's deemed a communication disconnection fault, with a disconnection	1.0s	•	0xD06
FD.07	Modbus Failure Processing	Modbus failure processing: 0: Timeout detection off The AC drive does not perform fault detection and always operates according to the last communication command. 1: Report error When the communication given command set by the AC drive does not receive the next frame communication command after the time set by [FD.06], the AC drive reports the fault E.074 and stops. 2: Report a warning and continue running When the AC drive operation command is given by the communication, after the duration set by [FD.06] is exceeded, and the AC drive still does not receive a new communication command, the AC drive reports the alarm A.074 and operates according to the last received communication command; 3: Forced stop	0000	•	0xD07

		After the communication given command set by the AC drive has exceeded the duration set by [FD.06] and the next frame command is still not received or there is no any other communication command, the AC drive stops according to the stopping mode.			
FD.08	Modbus Transmission	0: Write operation responds 1: Write operation does not	0	•	0xD08
FD.09	Master Sending Selection	It is the data that is sent to the slave when the AC drive is set as a Modbus communication master. At this point, the master AC drive sends a broadcast command, and all slaves will received the command sent by the master. The master can send up to 4 frames of data in polling mode, which correspond to the setting values of LED ones, tens, hundreds, and thousands bits, respectively. When it is set to invalid, no data is sent. Ones-bit: The first group transmitting selection 0: OFF 1: Master running command	000d	•	0xD09
FD.10	RS485 Configuration	0: As Modbus communication1: As serial communication2: Reserved	0	•	0xD0A
FD.11		Reserved			
FD.12	CAN Node No,	0~127 Set the node number, and repower-up after modification	0	•	0xD0C
FD.13		Reserved			

6.13: Group FE: Crane Function Parameters

Code	Name	Description	Default	Prop erty	Address
FE.00	Low Speed Gear	0.00Hz~50.00Hz	15.00Hz	•	0xE00
FE.01	High Speed Gear	0.00Hz~50.00Hz	50.00Hz	•	0xE01
FE.02	Control Box	0.00Hz~50.00Hz	25.00Hz	•	0xE02
F	E.03~FE.06	Rese	rved		
FE.07	Load Function	0: ON 1: OFF	0	•	0xE07
FE.08	Load Calibration	0: None 1: Empty cage calibration 2: With load calibration	0	0	0xE08
FE.09	Empty Cage Reference	0kg~2000kg	800kg	0	0xE09
FE.10	Empty Cage Reference Weight	0kg~500kg	70kg	0	0xE0A
FE.11	Load Calibration Weight	0kg~10000kg	2000kg	0	0xE0B
FE.12	Load Coefficient	0.0%~500.0%	150.0%	0	0xE0C
FE.13	Rated Load Capacity	0kg~10000kg	2000kg	0	0xE0D
FE.14	Load Display Coefficient	0.0%~150.0%	100.0%	0	0xE0E
FE.15	Load Alarm Coefficient	50.0%~200.0%	105.0%	0	0xE0F
FE.16	Pin Roll Disconnection	Ones-bit: Disconnection detection 0: OFF 1: Only detect 1# 2: Only detect 2# 3: ON Tens-bit: Brake failure protection 0: OFF 1: ON Hundreds-bit: Low input voltage voice prompt 0: OFF 1: ON Thousands-bit: Auto empty cage calibration 0: OFF	0	0	0xE10

		1: ON			
FE.17	Reserved				
FE.18	Power-on Voice	0~1000	0	0	0xE12
F	E.19~FE.34	Rese	rved		
FE 35	Cyclic Test Mode	0: OFF	0	•	0xE23
12.55	Cyclic Test Widde	1: ON	0		
FE.36	Test Cumulative Runtime	0.0h~48.0h	4.0h	•	0xE24
FE.37	Test Run Cycle	0.0s~600.0s	30.0s	•	0xE25
FE.38	Test Motor Operation Mode	0%~100%	80%	•	0xE26
F	E.39~FE.44	Rese	rved	-	
	Operating				
FE.45	Acceleration Limit	0.0%~100.0%	30.0%	•	0xE2D
	1				
	Operating	0.0%~100.0%	20.0%		
FE.46	Acceleration Limit			•	0xE2E
	2				
FE 47	Tower Jib Vibration	0.000s~50.000s	14.000s	0	0xE2F
12.11)	Cycle		1 110000		0.11221
FE.48	Stop Acceleration	0.0%~100.0%	30.0%	•	0xE30
	Limit 1				
FE.49	Stop Acceleration	0.0%~100.0%	20.0%	•	0xE31
	Limit 2				
FE.50	Accel./Decel.	0.0%~1000.0%	200.0%	•	0xE32
	Coefficient 1				
FE.51	Accel./Decel.	0.0%~1000.0%	70.0%	•	0xE33
	Coefficient 2		-		
FE.52	Accel./Decel.	0.0%~1000.0%	75.0%	•	0xE34
	Coefficient 3		-		-
FE.53	Accel./Decel.	0.0%~1000.0%	100.0%	•	0xE35
	Coefficient 4		100.0%		
FE.54	Stable Control	0.0%~50.0%	2.0%	•	0xE36
	Torque Threshold		2.070		
FE.55	Stable Control Gain	Increase when there is rebound	8.00	•	0xE37

		during stop. Range: 0.00~50.00			
FE.56	Stable Control Frequency Limit	0.00Hz~20.00Hz	10.00Hz	•	0xE38
FE.57	Stop Frequency Base	Increase when there is rebound during stop. Keep at or below 1.00 Hz to prevent issues with long jog distance. Range: 0.00Hz~10.00Hz	0.50Hz	•	0xE39
FE.58	Stop Holding Frequency	0.00Hz~10.00Hz	0.00Hz	•	0xE3A
FE.59	Stop Frequency Holding Time	0.000s~60.000s	1.000s	•	0xE3B
FE.60	Min. Runtime for Hoist Transmission Ratio Identification	0.000s~30.000s	10.000s	0	0xE3C
FE.61	High Hoist Transmission Ratio Coefficient	0~65535	0	0	0xE3D
FE.62	Low Hoist Transmission Ratio Coefficient	0~65535	0	0	0xE3E
FE.63	Upper Limit Equivalent Rope Length	0.00m~25.00m	4.00m	0	0xE3F
FE.64	Rope Length Estimation 1	0.00m~300.00m	0.00m	0	0xE40
FE.65	Rope Length Estimation 2	0.00m~300.00m	0.00m	0	0xE41
FE.66	Lifting Weight Equivalent Rope Length	The height from the center of weight to the main hook. Range: 0.00m~20.00m	2.00m	•	0xE42
FE.67	Anti-swing Control	Ones-bit: Anti-swing switch 0: OFF 1: ON Tens-bit: Fixed rope length 0: OFF For OFF, anti-swing control will	0001	•	0xE43

					- 1
FF (9)	First David	be performed with the rope length obtained from the hoisting drive. 1: ON For ON, the anti-swing control will be performed using the rope length set in FE.68. If the rope length is known, check the anti- swing performance here.	10.00		0.544
FE.68	Fixed Rope Length	0.00m~300.00m	10.00m	•	0xE44
FE.69		Reserved			
FE.70	Decel. Optimization Function	0: OFF 1: ON	0	0	0xE46
FE.71	Lifter Linear Speed	1.0m/min~200.0m/min	34.0m/mi n	0	0xE47
FE.72	Frequency as Linear Velocity	1.00Hz~100.00Hz	50.00Hz	0	0xE48
FE.73	Decel. Stop Distance	0.000m~10.000m	0.400m	0	0xE49
FE.74	Decel. Optimization Mode	Ones-bit: Greater than the lower limit holding frequency 0: Segmented deceleration stop 1: Direct deceleration stop Tens-bit: Less than the lower limit holding frequency 0: Segmented deceleration stop 1: At FE.75 frequency Hundreds-bit: Terminal for UP command when the upper limit position is valid 0: Free stop 1: Deceleration stop Thousand bits: DW function for lower limit position after deceleration 0: ON, at FE.75 frequency 1: OFF, until it exits the lower limit position mode	1000	0	0xE4A
F	E.75~FE.81	Rese	rved		
		Ones-bit: Stable hoisting mode			
FE.82	Hoisting Control	0: OFF 1: ON	0000	•	0xE52

		Tens-bit: Anti-snag mode 0: OFF 1: Report a fault [E.059] 2: Alarm and continue running [A.079] Hundreds-bit: Reversed Thousands-bit: Constant power mode 0: OFF 1: ON			
FE.83	Load Calculation Frequency	This code computes the load when the target frequency exceeds it, so as to achieve the current load torque. Range: 0.00Hz~50.00Hz	20.00Hz	0	0xE53
FE.84	Load Calculation Time	In stable hoisting and anti-snag control, it refers to the holding time of FE.90 [Tension Frequency]; in constant control, it refers to the holding time of FE.83 [Load Calculation Frequency]. Range: 0.000s~3.000s	0.500s	0	0xE54
FE.85	Light Load Torque	Define the working conditions of light load,100.0% corresponding to the rated motor torque. The frequency limit is FE.A3 when the load calculation torque is less than. Used for empty hook judgment in stable control. Range: 0.0%~50.0%	15.0%	•	0xE55
F	E.86~FE.87	Rese	rved		
FE.88	Speed Change Threshold	0.00Hz~5.00Hz	2.00Hz	•	0xE58
FE.89		Reserved			
FE.90	Tension Frequency	Used for load judgment in stable hoisting and anti-snag control. Range: 0.00Hz~10.00Hz	3.00Hz	•	0xE5A
FE.91	Max. Frequency in	0.00Hz~120.00Hz	100.00Hz	•	0xE5B
FE.92	Tension Frequency	0.000s~20.000s	6.000s	•	0xE5C
FE.93	Max. Time for	0.000s~40.000s	15.000s	•	0xE5D

F	E.94~FE.97	Reserved			
FE.98	Anti-snag Torque Increase	0.0%~100.0%	20.0%	•	0xE62
FE.99	Anti-snag Torque Change Rate Threshold	0.0%~100.0%	1.5%	•	0xE63
FE.A0	Anti-snag Detection Time	0.000s~20.000s	2.000s	•	0xE64
FE.A1	UP Hoisting Power Limit	0.0%~150.0%	90.0%	•	0xE65
FE.A2	DW Hoisting Power Limit	0.0%~150.0%	80.0%	•	0xE66
FE.A3	Hoisting Max. Frequency Limit	0.0%~300.0%	200.0%	•	0xE67
FE.A4	UP Power Coefficient in FVC	0%~120%	100%	•	0xE68
FE.A5	DW Power Coefficient in FVC	0%~120%	90%	•	0xE69
FE.A6	UP Power Coefficient in SVC	0%~120%	80%	•	0xE6A
FE.A7	DW Power Coefficient in SVC	0%~120%	70%	•	0xE6B
FE.A8	UP Detection in FVC	0%~100%	90%	•	0xE6C
FE.A9	DW Detection in FVC	0%~100%	80%	•	0xE6D
FE.b0	UP Detection in SVC	0%~100%	90%	•	0xE6E
FE.b1	DW Detection in SVC	0%~120%	80%	•	0xE6F

6.14 Group FF: Crane-Specific Parameter Group 2

Code	Name	Description	Default	Prop erty	Address
FF.00	Application Type	0: Reserved 1: Single drive for lifter 2: Travel mechanism 3: Rotation mechanism 4: Lifting integrated machine 5: Hoisting mechanism 6: Reserved	5	0	0xF00
FF.01	Brake Control	Ones-bit: Release torque condition 0: Frequency reached 1: Frequency and current arrives at the same time 2: Output torque arrival (valid in vector control mode) Tens-bit: Release torque direction 0: Same as operation 0: Same as operation 1: Forward Hundreds-bit: Apply torque direction 0: Same as operation 1: Forward Hundreds-bit: Apply torque direction 0: Same as operation 1: Forward Hundreds-bit: Apply torque direction 0: Same as operation 1: Forward Hundreds-bit: Reserved	1001	0	0xF01
FF.02	Command Control	Ones-bit: Reverse running command control	0010	0	0xF02

		0: OFF			
		REV is not allowed during			
		operation.			
		1: ON			
		REV is allowed during operation.			
		Tens-bit: Zero-crossing			
		frequency jump			
		0: OFF			
		1: ON			
		Switching from forward to reverse			
		jumps the frequency from forward			
		FF.05 to reverse FF.05 and vice			
		versa. During this, acceleration and			
		deceleration times are [FF.73] and			
		[FF.74], respectively.			
		Hundred digits: FDW/REV V/F			
		curve separation			
		0: OFF			
		Customize V/F curve up to			
		[F8.01~F8.10].			
		1: ON			
		The customized V/F curve for			
		forward operation is determined by			
		F8.01~F8.10:			
		The customized V/F curve for			
		reverse operation is determined by			
		F8.25~F8.34:			
		Thousands-bit: Brake feedback			
		0: Not enabled			
		1: Enable brake release feedback			
		only			
		2: Enable brake apply feedback			
		only			
		3: Enable both			
		After completing the braking and			
		the time set in this parameter the			
		drive will respond to a running			
FF.03	Command Interval	command received during braking	0.30s	0	0xF03
		and shutdown			
		Range: $0.00s \sim 10.00s$			
	Brake Release	Taniger croop Toroop			
FF.04	Current Coefficient	0.0%~100.0%	20.0%	0	0xF04
	Zero-Crossing				
FF.05	Loro crossing	0.00Hz~10.00Hz	1.00Hz	0	0xF05

FF.06	Forward Brake Release Frequency	0.00Hz~10.00Hz	2.00Hz	0	0xF06
FF.07	Forward Brake Apply Frequency	0.00Hz~10.00Hz	2.00Hz	0	0xF07
FF.08	Reverse Brake Release Frequency	0.00Hz~10.00Hz	2.00Hz	0	0xF08
FF.09	Reverse Brake Apply Frequency	0.00Hz~10.00Hz	2.00Hz	0	0xF09
FF.10	Pre-delay of Forward Brake	0.00s~1.00s	0.20s	0	0xF0A
FF.11	Post-delay of Forward Brake Release	0.00s~1.00s	0.10s	0	0xF0B
FF.12	Pre-delay of Forward Brake Apply	0.00s~1.00s	0.00s	0	0xF0C
FF.13	Post-delay of Forward Brake Apply	0.00s~1.00s	0.50s	0	0xF0D
FF.14	Pre-delay of Reverse Brake Release	0.00s~1.00s	0.20s	0	0xF0E
FF.15	Post-delay of Reverse Brake Release	0.00s~1.00s	0.10s	0	0xF0F
FF.16	Pre-delay of Reverse Brake Apply	0.00s~1.00s	0.00s	0	0xF10
FF.17	Post-delay of Reverse Brake Apply	0.00s~1.00s	0.30s	0	0xF11
FF.18	Lifting Function	Ones-bit: Reserved Tens-bit: Reserved Hundreds-bit: Emergency stop alarm and fault display 0: Display ON 1: Display OFF Thousands-bit: reserved	1100	0	0xF12
FF.19	Reserved	Range: 0.00Hz~10.00Hz	4.50Hz	0	0xF13
FF.20	Reserved	Ones-bit: V/F release optimization 0: OFF Others: ON	0000	0	0xF14

		Tens-bit: Independent modification for motor 0: OFF 1: ON			
	FF.21~FF.24	Reser	ved		
FF.25	Output Abnormality Protection	While the drive runs, the output current is monitored. If it falls below [FF.26] (100% being the	1	0	0xF19
FF.26	Output Current Anomaly Detection Threshold	motor's rated current) for longer than [FF.27], an output abnormality is registered and a	5%	0	0xF1A
FF.27	Output Current Abnormality Detection Time	fault (E.063) is reported. FF.25 0: OFF 1: ON FF.26: 0%~50% FF.27: 0.000s~1.000s	0.400s	0	0xF1B
FF.28	Light Load Step-up Frequency	0: OFF 1: Up to current 2: Up to torque	0	0	0xF1C
FF.29	Load Calculation Time	0.000S~5.000s in anti-snag mode	1.000s	0	0xF1D
FF.30	UP Step-up Frequency Judgment Threshold	0.0%~80.0%	60.0%	0	0xF1E
FF.31	UP Step-up Frequency Upper Limit	0.00Hz~Max. frequency	65.00Hz	•	0xF1F
FF.32	DW Step-up Frequency Judgment Threshold	0.0%~80.0%	40.0%	0	0xF20
FF.33	DW Step-up Frequency Upper Limit	0.00Hz~Max. frequency	65.00Hz	•	0xF21
FF.34	Step-down Frequency up to Voltage	0: OFF 1: ON	0	0	0xF22
FF.35	Coefficient of Step- down Frequency up to Voltage	80%~100%	90%	0	0xF23
FF.36	Slewing Control 1	Ones-bit: Flexible control	1101	0	0xF24

		0: OFF 1: ON To address tower jib "stuttering" issue, see flexible control description for details. Tens-bit: Flexible control accel./decel. time 0: OFF 1: ON To address tower jib "stuttering" issue, see flexible control description for details. Hundreds-bit: Slewing-specific acceleration/deceleration 0: OFF 1: ON The accel. and decel. time of slewing is determined by parameter group FB. Thousand-bits: Eddy-free frequency control 0: OFF			
FF.37	Flexible Control Start Deviation	1: ON 0.00Hz~20.00Hz	1.00Hz	•	0xF25
	Frequency				
FF.38	Flexible Control Direction Change Deviation Frequency	0.00Hz~20.00Hz	2.50Hz	•	0xF26
FF.39	Flexible Control Acceleration Time	0.00s~50.00s	20.00s	•	0xF27
FF.40	Flexible Control Deceleration Time	0.00s~50.00s	20.00s	•	0xF28
FF.41	Segmented Accel./Decel.	0.00Hz~Max. frequency	0.00Hz	•	0xF29
FF.42	Segmented Accel./Decel. Switching Frequency 2	0.00Hz~Max. frequency	0.00Hz	•	0xF2A
FF.43	Segmented Accel./Decel. Switching Frequency 3	0.00Hz~Max. frequency	0.00Hz	•	0xF2B

	FF.44	Reserved				
FF.45	Eddy Frequency 1	0.00Hz~Max. frequency	20.00Hz	•	0xF2D	
FF.46	Eddy Frequency 2	0.00Hz~Max. frequency	40.00Hz	•	0xF2E	
FF.47	Eddy Frequency 3	0.00Hz~Max. frequency	40.00Hz	•	0xF2F	
FF.48	Zero-Speed Duty Cycle	0.0%~100.0%	0.0%	•	0xF30	
FF.49	Duty Cycle to Eddy Frequency 1	0.0%~100.0%	0.0%	•	0xF31	
FF.50	Max. Duty Cycle at Stop	0.0%~100.0%	80.0%	•	0xF32	
FF.51	Eddy Holding Time at Stop	0.0s~3000.0s	60.0s	0	0xF33	
FF.52	Eddy Output Carrier	0.20kHz~4.00kHz	0.20kHz	0	0xF34	
FF.53	Duty Cycle Polarity	0: Positive 1: Negative	1	•	0xF35	
FF.54	Duty Cycle Change Rate at Stop	0.0%~50.0% Time unit is 100ms	0.5%	•	0xF36	
FF.55	Brake Torque Detection	0: OFF 1: ON	1	0	0xF37	
FF.56	Braking Torque Detection No.	0~10	3	0	0xF38	
FF.57	Brake Torque Detection Torque	0.0%~150.0%	100.0%	0	0xF39	
FF.58	Brake Torque Detection Frequency Threshold	0.00Hz~5.00Hz	2.00Hz	0	0xF3A	
FF.59	Brake Torque Detection Filter Time	0.000s~2.000s	0.200s	0	0xF3B	
FF.60	Brake Failure Protection	0: OFF 1: ON	1	0	0xF3C	
FF.61	Brake Failure Protection Threshold	0.00Hz~5.00Hz	0.50Hz	0	0xF3D	
FF.62	Brake Failure Protection Hold Time	0.0s~3000.0s	60.0s	0	0xF3E	
FF.63	Brake Failure Filter Time	0.000s~2.000s	0.050s	0	0xF3F	

FF.64	Brake Failure UP Frequency Limit	0.00Hz~100.00Hz	0.00Hz	•	0xF40
FF.65	Brake Failure Downward Frequency Limit	0.00Hz~100.00Hz	50.00Hz	•	0xF41
FF.66	Reserved	0.0%~200.0%	15.0%	•	0xF42
FF.67	Reserved	0.0%~200.0%	15.0%	•	0xF43
FF.68	Reserved	0.0%~100.0%	8.0%	•	0xF44
FF.69	Brake Apply Feedback Detection Delay	0.00s~5.00s	0.30s	•	0xF45
FF.70	Reserved	0~60000	0	•	0xF46
FF.71	PG Disconnection Detection Filter time	10ms~3000ms	50ms	0	0xF47
FF.72	PG Disconnection Detection Selection	Ones-bit: A/B disconnection detection 0: OFF 1: ON Tens-bit: Z disconnection detection 0: OFF 1: ON Hundreds-bit: Reserved Thousands-bit: Reserved	0001	O	0xF48
FF.73	Zero Crossing Jump Acceleration Time	0.00s~600.00s	0.01s	•	0xF49
FF.74	Zero Crossing Jump Deceleration Time	0.00s~600.00s	0.01s	•	0xF4A
FF.75	Stop Command Lock Frequency	0.00Hz~600.00Hz	6.00Hz	•	0xF4B
FF.76	Fan Stop Delay	0s~3600s	60s	•	0xF4C
FF.77	Slewing Pre-brake Frequency Threshold	When it is ON (the corresponding DI terminal number is set to 88 to which the slewing brake signal is connected), drive stops outputting in the case of given frequency is less than the value. Range: 0.00Hz~50.00Hz	5.00Hz	0	0xF4D
FF.78	Reserved	0.0%~200.0%	20.0%	•	0xF4E

FF.79	Reserved	0.0%~200.0%	50.0%	•	0xF4F
FF.80	Post-delay of Slewing Brake Apply	0ms~60000ms	1000ms	0	0xF50
FF.81	Bus Voltage Filter Depth	0~9	6	•	0xF51
FF.82	Lifting Undervoltage Point	0.0%~90.0%	72.0%	•	0xF52
FF.83	Buffer Resistor Bypass Delay	0ms~6000ms	1500ms	•	0xF53
FF.84	Tower Jib Length	Up to actual crane jib length. Range: 0m~200m	60	0	0xF54
FF.85	Slewing Acceleration Gain	Increase for longer acceleration time and jib length. Range: 50%~500%	110%	•	0xF55
FF.86	Slewing Deceleration Gain	Increase for longer deceleration time and jib length. Range: 50%~500%	90%	•	0xF56
FF.87	Slewing Control 2	Ones-bit: Reserved Tens-bit: Reserved Hundredths-bit: REV gear for deceleration 0: OFF 1: ON Set the deceleration time for slewing in REV gear in FF.97. Thousands-bit: Eddy-free stable slewing control 0: OFF Others: ON	4100	0	0xF57
F	F.88~FF.89	Reser	ved		
FF.90	Starting Stable Frequency	0.00Hz~10.00Hz	6.00Hz	•	0xF5A
FF.91	Reserved	0.0%~200.0%	10.0%		
FF.92	Starting Stable Time	0ms~5000ms	1500ms	•	0xF5C
FF.93		Reserved			
FF.94	REV Gear Response Frequency	0.00Hz~10.00Hz	3.00Hz	•	0xF5E
FF.95	REV Gear Filter Time	0.000s~5.000s	1.500s	•	0xF5F

FF.96	REV Gear Torque Gain	0.0%~200.0%	80.0%	•	0xF60
		If REV Gear for Deceleration is			
	REV Gear for	ON (FF.87 hundreds-bit=1), Actual			
FF.97	Deceleration	decel. time=FF.97*Original decel.	70.0%	•	0xF61
	Coefficient	time.			
		Range: 0.0%~100.0%			
FF.98	Reserved	0.01s~50.00s	4.00s	•	0xF62
FF.99	Reserved	0.01s~50.00s	2.00s	•	0xF63
FF.A0	Stop Frequency Threshold	0.00Hz~20.00Hz	10.00Hz	•	0xF64
FF.A1	Stop Torque Threshold	. 0.0%~50.0%		•	0xF65
FF.A2~FF.A5		Reserved			
FF.A6 Slewing Failure Brake Apply Delay		0.000 50.000	10.000	_	0
		0.000s~30.000s	10.000s	•	0XF6A
F	F.A7~FF.b9	Reserved			

7 Terminal Function

Х	Description	X	Description	Х	Description
0	N. Carting	22	Accel./decel. time	52	E
0	No functions	32	selection terminal 1	33	Forward operation off
1	Forward	22	Accel./decel. time	5.4	D i m
I	operation	33	selection terminal 2	54	Reverse operation off
2	Reverse	34	Acceleration/ deceleration	55~79	Reserved
2	operation	54	pause	55 17	Keser ved
3	Three-wire	35~39	Reserved	80	Weight alarm switch
5	operation (Xi)	55-57	Kesel veu	00	terminal
1	Forward	40	Timer triggering terminals	Q 1	Empty cage weighing
4	jogging	40	Timer utggering terminals	01	correction terminal
5	Reverse	41	Timer and the second second	02	Durles tennus detection
3	jogging	41	Timer reset terminals	82	Brake torque detection
		42	Counter clock input	83	Input phase loss
6	Free stop		terminal		detection blocked
_	Emergency	42	Country and tomainal	0.4	Decel. optimization
/	stop	43	Counter reset terminal	84	lower limit
0		4.4	DCI I I	0.5	Decel. optimization
8	Fault reset	44	DC brake command	85	upper limit
0	External fault	45	Pre-excitation command	96	DO OFF delay
9	input	43	terminal	80	interruption
10~12	Reserved	46~47	Reserved	87	Ant-speed (slow
	CI 14.		<u> </u>		positioning) switch
13	Channel A to	48	Command channel to	88	Pre-brake for slewing
	Channel B		keyboard		
C	Combined		Command channel to		
14	trequency	49	terminal	89	Lifting upper limit
	channel to A				
15	Combined	50	Command channel to	90	Anti-swing switch
15	channel to B	50	communication	70	The swing switch

16~19	Multi-segment speed terminal 1~4	51	Command channel to expansion card	91	Brake feedback
20~31	Reserved	52	Operation off		
Y	Description	Y	Description	Y	Description
0	No output	12	Zero-speed operation in progress	37	Slewing-specific brake control
1	Drive in operation	13~23	Reserved	38~40	Reserved
2	Drive in reverse operation	24	Dynamic brake in progress	41	X1 status mapping
3	Drive in forward operation	25	PG disconnection feedback	42	X2 status mapping
4	Fault trip alarm 1 (alarm during auto recovery from failure)	26	Emergency stop in progress	43	X3 status mapping
5	Fault trip alarm 2 (no alarm during auto recovery from failure)	27	Load warning output 1	44	X4 status mapping
6	Shutdown due to external faults	28	Load warning output 2	45	X5 status mapping
7	Drive undervoltage	29~32	Reserved	46	X6 status mapping
8	Drive ready for operation	33	Brake control	47	X7 status mapping
9	Output frequency level detection 1 (FDT1)	34	Input phase loss		
10	Output frequency level detection 2 (FDT2)	35	Brake failure protection in progress		

reached error detection	11	Given frequency reached	36	Insufficient brake torque error detection		
-------------------------	----	-------------------------------	----	--	--	--

8 Monitoring Parameter

Enter Parameter group "C" by pressing PRG key for more than 2s to view the current status of the AC drive.

Code	Name Definition		
C-00	Given Frequency	0.01Hz	2100H
C-01	Output Frequency	0.01Hz	2101H
C-02	Output Current	0.1A	2102H
C-03	Input Voltage	0.1V	2103H
C-04	Output Voltage	0.1V	2104H
C-05	Mechanical Speed	1RPM	2105H
C-06	Given Torque	0.1%	2106H
C-07	Output Torque	0.1%	2107H
C-08	Rope Length	0.1m	2108H
C-09	Reserved		2109H
C-10	Output Power	0.1%	210AH
C-11	Bus Voltage	0.1V	210BH
C-12	Module Temperature 1	0.1°C	210CH
C-13	Module Temperature 2	0.1°C	210DH
C-14	Input terminal X ON	See the input terminal status	210EH
C-15	Output terminal Y ON	See the output terminal	210FH
C-16	VS Value	0.001V	2110H
C-17	AI Value	0.001V/0.001mA	2111H
C-18	AS Value	0.001mA	2112H
C-19	Reserved		2113H
C-20	AO1	0.01V	2114H
C-21	AO2	0.01V/0.01mA/0.01kHz	2115H
C-22	Counter Value		2116H
C-23	Runtime	0.1h	2117H
C-24	Cumulative Runtime	Hour	2118H
C-25	Drive Power Rating	kW	2119H
C-26	Drive Rated Voltage	V	211AH
C-27	Drive Rated Current	А	211BH
C-28	Software Version		211CH
C-29	PG Feedback Frequency	0.01Hz	211DH
C-30	Decel. Optimization		211EH
C-31	Decel. Optimization	See the output terminal	211FH
C-32	Re	eserved	2120H
C-33	Re	eserved	2121H

C-34	Re	2122H	
C-35	Re	2123H	
C-36	Fault Alarm		2124H
C-37	Cumulative Power	1~9999	2125H
C-38	Cumulative Power	1~9999	2126H
C-39	Power Factor Angle	1	2127H

Input Terminal ON/OFF Status:

Input Terminal ON/OFF Status Schematic

Note: C-30 monitoring extended input terminal D0~D5 wiring diagram is the same as this, but only shows that the first six bits are valid.

Output Terminal X ON/OFF Status:

Output Terminal ON/OFF Status Schematic

9 Troubleshooting

This chapter details AC drive faults, alarms, errors in operation, display, and solutions, as well as minor problems due to AC drive and motor malfunctions and their remedies.

It also includes a debugging guide for the AC drive during trial operation.

9.1 Fault Type

Туре	Response
	See the actions as below upon fault detected in the drive:
	• Fault code appears on the keyboard;
	• Drive output is cut off and the motor stops freely;
Direc Freek	• With [F2.45] set to 4 (Fault trip alarm 1), Y outputs valid collector open circuit
Drive Fault	switch value;
	• With [F2.46]/[F2.47] set to 4 (Fault Trip Alarm)1), TA1-TC1 and TA2-TC2T output
	closed passive switch value, TB1-TC1 and TB2-TC2 output disconnected passive
	switch value.
	In certain applications, external device fault signals are connected to the AC drive
Eastern 1 Easte	control system. If a multi-function input terminal is defined as an "external fault" for
External Fault	monitoring, protection, or control, the drive will enter "report fault and stop" mode
	when it detects a valid fault signal.

9.2 Fault Details

Display	Code	Name	Cause	Solution
L.U. 1	64	Undervoltage	Supply voltage is too low;Circuit for detecting voltage is abnormal;	Check the input power supply;Seek support from the manufacturer.
E.L U 2	10	Undervoltage in Operation	 Supply voltage is too low; The grid capacity is too low, or a large impact current is in the grid; The DC main contactor inside the drive is not closed. 	 Check the input power supply; Improve the power supply system; Seek support from the manufacturer.

E.o U 1	7	Overvoltage in Acceleration	 Supply voltage fluctuation is above limit; Start a running motor; 	 Check the grid voltage; Wait for the motor to stop completely before restarting, then set [F1.00] to 1 or 2.
5.0 U 2	8	Overvoltage in Deceleration	 Deceleration time is set too short; Load potential energy or inertia is too large; Supply voltage fluctuation is above limit. 	 Increase the deceleration time properly; Reduce load inertia, increase the drive capacity, or add a braking unit; Check the input power supply.
E.o U 3	9	Overvoltage in Constant Speed Operation	• Supply voltage fluctuation is above limit.	Check the input power supply;Install an input reactor.
E.o U Y	28	Overvoltage during Stop	• Supply voltage fluctuation is above limit.	Check the input power supply;Seek support from the manufacturer.
E.o C 1	4	Overcurrent in Acceleration	 Acceleration time is set too short; Start a running motor; V/F curve setting is not correct or the torque boost is too high; Drive capacity is low. 	 Increase the acceleration time properly; Wait for the motor to stop completely before restarting, then set [F1.00] to 1 or 2. Reset V/F curve or torque boost; Choose a drive with matching capacity.
5.0C2	5	Overcurrent in Deceleration	 Deceleration time is set too short; Potential energy load or load inertia is large; Drive capacity is low. 	 Increase the deceleration time properly; Connect with a external brake resistor or braking unit; Choose a drive with matching capacity.
£.o.C 3	6	Overcurrent in Constant Running	Load changes suddenly;Grid voltage is low;	 Troubleshoot for the load change and address it; Check the input power supply.
8.01 I	11	Motor Overload	 V/F curve setting is not suitable or the torque boost is too high; Grid voltage is low; Motor overload protection coefficient setting is improper; The motor is blocked during operation or the load is too heavy; 	 Reset V/F curve or torque boost; Check the input power supply; F5.06/FA.16 setting is improper; Adjust the load, or choose a drive with matching capacity; Choose a specific motor for long-term low-speed operation.

			• The general-purpose motor runs at low speed for a long time.	
E.o.L.2	12	Drive Overload	 Load is too large; Acceleration time is set too short; Start a running motor; V/F curve setting is not correct or the torque boost is too high. 	 Choose a drive with matching capacity; Increase the acceleration time properly; Wait for the motor to stop completely before restarting, then set [F1.00] to 1 or 2. Reset V/F curve or torque boost.
E. SC	1	Abnormal System	 Acceleration time is set too short; The drive output is shorted between phases or to ground; Module damaged; Electromagnetic interference. 	 Increase the acceleration time properly; Check peripheral equipment and restart after troubleshooting; Seek support from the manufacturer; Check system wiring, grounding, shielding, etc. and deal with them as required.
8.0 H 1	16	Drive Overheat	 Working environment is overtemperature; Air duct is blocked; The fan connection plug-in is loose; Fan damaged; Temperature detection circuit is faulty. 	 Ensure the drive's operating environment meets specifications; Clear the air duct; Check and reconnect; Replace with a fan with the same model; Seek support from the manufacturer.
5.0 H Z	15	Rectifier Bridge Overheat	 Working environment is overtemperature; Air duct is blocked; The fan connection plug-in is loose; Fan damaged; Temperature detection circuit is faulty. 	 Ensure the drive's operating environment meets specifications; Clear the air duct; Check and reconnect; Replace with a fan with the same model; Seek support from the manufacturer

еле т	20	Motor Detection Fault	 Motor detection timeout; Start static detection during motor operation; Motor and drive capacities are mismatched; The motor parameter setting is improper. 	 Check motor connection; Detect after the motor stops completely; Detect after the motor stops completely; Change to a matching drive model; Reset according to the motor nameplate.
<u>ЕЕЕР</u> 8.ЕЕР	21/69	Storage Failure	With EMI during storage;EEPROM damaged.	 Re-enter the parameter and store it; Seek support from the manufacturer.
LAFE	30	Reserved		• An expanded error code.
E. (L.F. R. (L.F.	13/65	Input Phase Loss	• The drive's three-phase input power supply is out of phase.	 Check the three-phase input power supply voltage and the number of phases; Check the three-phase input power wiring.
E.o.L.F	14	Output Phase Loss	• The drive's three-phase output power supply is out of phase.	Check the three-phase output voltage and current;Check the motor wiring.
E.Ginid	E.Gnd	Output Grounding	• A part on the AC drive output side is short circuited to ground.	• Check the wiring, motor insulation.
E.H.R.L	19	Current Detection Failure	Abnormal detection circuit;Motor phase imbalance.	Seek for technical support;Check the motor and the wiring.
8. 8F	17	Drive External Error	• Protection action for external equipment failure.	• Check external equipment.
E.P.R.n	E.PAn	Keyboard Connection Error	 Abnormal keyboard wiring; Damaged keyboard component.	Check keyboard wring;Seek support from the manufacturer.
ε. σε	18	RS485 Communicati on Abnormality	 Improper setting of baud rate; Communication wiring disconnected; Mismatched communication format with host. 	 Set to a matching baud rate; Check communication wring; Set to a matching communication format.
8.5.9.8	26	Parameter Copy Abnormality	 rarameter copy communication error; Abnormal keyboard wiring. 	 Cneck the wring; Seek support from the manufacturer.

8.8CF 8. 80	E.ECF	Expansion card connection abnormality PG Card Connection	 Communication timeout between the expansion card and drive. Mismatched expansion card and drive. The connection between the PG card and the drive is 	 Check the connector and reconnect it; Choose the specified expansion card. Check the wring
4. FU	21	Abnormality	abnormal.	• Check life writig.
E.P id R.P id	29/66	PID Feedback Error	 Incorrect setting of PID disconnection warning upper limit; Incorrect setting of PID disconnection warning lower limit; PID feedback wiring abnormality; Feedback sensor malfunction; Feedback input circuit malfunction. 	 Check the status of the sensor, and replace it if damaged; Correct the wiring; Check the setting of [FB.27] and [FB.28].
8. 188	31	Initial Position Angle Failure	• Check the motor parameter.	 Check the motor parameter; Retuning when the motor is still; Seek support from the manufacturer.
8.88F 8.88F	32/70	Excessive Speed Deviation	 Improper settings of detection time or threshold; Improper motor parameter settings. 	 Check the motor parameters, and rerun auto-tuning; Check the settings of FA.24 and FA.25; Seek support from the manufacturer.
8.5Pd R.5Pd	33/71	Stall Protection Error	 Improper settings of [FA.27]/[FA.28]; Improper motor parameter settings; Check Group F6 (vector control parameters). 	 Check the motor parameters, and rerun auto-tuning; Check the settings of FA.27 and FA.28;
8.L 8 1 8.L 8 1	34/67	Load Protection 1	• Improper settings of detection time or threshold.	• Check the settings of FA.18 and FA.19;
56,13	35/68	Load Protection 2	• Improper settings of detection time or threshold.	• Check the settings of FA.20 and FA.21.

S6 J.R				
8.C P U	36	CPU Timeout	• CPU timer timeout.	• Seek support from the manufacturer.
E.042	42	PG Card AB Phase Disconnectio n	• Encoder phases A and B are disconnected.	• Check the wiring between encoder and PG card.
E.043	43	PG Card B- Phase Disconnectio n	• Disconnected encoder B- phase.	• Check the wiring between encoder and PG card.
E.044	44	PG Card A- Phase Disconnectio n	• Disconnected encoder A- phase.	• Check the wiring between encoder and PG card.
E.045	45	PG Card Z- Phase Disconnectio n	• Disconnected encoder Z- phase.	• Check the wiring between encoder and PG card.
E.061	61	Brake Failure Detection Error	• Insufficient brake torque.	• Check whether the brake torque is insufficient.
E.062	62	Pre-Brake Release Current/Torq ue Detection Error	• If the brake release detection current is below its judgment current, report this fault.	 Check whether the drive's motor parameters match the actual values; Check whether the drive's output to the motor is reliably wired.
E.063	63	In-Operation Current Detection Error	• The current in operation is less than FF.26.	 Check whether the drive's motor parameters match the actual values; Check whether the drive's output to the motor is reliably wired.
9.3 Fault Alarm

Display	Code	Name	
A.072	72	Agent GPRS Lockout Alarm	
A.073	73	Non-agent GPRS Lockout Alarm	
A.074	74	485 Communication Alarm	
A.075	75	PG Card AB Phase Disconnection	
A.076	76	PG Card B-Phase Disconnection	
A.077	77	PG Card A Phase Disconnection	
A.078	78	Load Slipping from Hook	
A.079	79	Weight Alarm	

10 Accessory Selection

10.1 Braking Resistor Selection

For braking resistor selection, it requires considering the motor-generated power, influenced by factors like inertia, deceleration time, and potential energy load, as well as customers' specific needs. Higher system inertia, shorter deceleration times, and more frequent braking necessitate a braking resistor with higher power and lower resistance.

Drive model	Rated current	Brake unit	HoistingRotary andmechanismluffingresistormechanismpowerresistor power		Resistance	Set
AC70T-T3-R75-B	2.3A	Built-in	≥300W ≥150W		≥300Ω	1
AC70T-T3-1R5-B	3.7A	Built-in	≥750W	≥300W	≥250Ω	1
AC70T-T3-2R2-B	5A	Built-in	≥1.1kW	≥550W	≥200Ω	1
AC70T-T3-004-B	8.5A	Built-in	≥2kW	≥750W	≥120Ω	1
AC70T-T3-5R5-B	13A	Built-in	≥3kW	≥1.1kW ≥800		1
AC70T-T3-7R5-B	17A	Built-in	≥4kW	≥1.5kW ≥65Ω		1
АС70Т-Т3-011-В	25A	Built-in	≥5.5kW	≥2.2kW ≥43Ω		1
АС70Т-ТЗ-015-В	32A	Built-in	≥7.5kW	≥3kW	≥32Ω	1
AC70T-T3-018-B	38A	Built-in	≥10kW	$\geq 3.6 \mathrm{kW} \geq 20 \Omega$		1
АС70Т-Т3-022-В	45A	Built-in	≥11kW	≥4.4kW	$\geq \!\! 18\Omega$	1

АС70Т-Т3-030-В	60A	Built-in	≥15kW	≥6kW	$\geq 15\Omega$	1
АС70Т-Т3-037-В	75A	Built-in	≥19kW	≥7.4kW	$\geq 12\Omega$	1
AC70T-T3-045-B	90A	Built-in	≥23kW	≥9kW	$\geq 10\Omega$	1
АС70Т-Т3-055-В	110A	Built-in	≥28kW	≥11kW	$\geq 8\Omega$	1
AC70T-T3-075-B	150A	Built-in	≥38kW	≥15kW	$\geq 6\Omega$	1
АС70Т-Т3-090-В	180A	Built-in	≥23kW	≥9kW	≥12Ω	2
AC70T-T3-110	210A	BU30-3- 100*2	≥28kW	≥11kW	$\geq 10\Omega$	2
AC70T-T3-132	250A	BU30-3- 100*2	≥33kW	≥13kW	≥9Ω	2
AC70T-T3-160	310A	BU30-3- 100*2	≥40kW	≥16kW	$\geq 8\Omega$	2
AC70T-T3-185	340A	BU30-3- 100*2	≥45kW	≥18kW	$\geq 7\Omega$	2
AC70T-T3-200	380A	BU30-3- 100*2	≥48kW	≥20kW	$\geq 6\Omega$	2

10.2 PG Card Selection

1. Overview

The AC70T series (vector-controlled AC drive) is equipped with various feedback cards to detect the motor speed and direction signal for precise control. Please select a suitable PG card according to the encoder.

2. PG Card Selection and Classification

The AC200PG01/02 feedback card, mainly used in the QT series and AC70T series crane drives, offers motor speed and direction feedback in FVC mode, enhancing functions like lifting mechanism load slippage prevention.

PG card type	Encoder signal type	PG card output signal	Motor type
Incremental encoder PG card	 Differential signal input Collector signal input Push-pull signal input 	 Open collector output (frequency division on/off) Collector signal output (frequency division on/off) 	AM/PM

3. PG Card Model

Model Description

Notice:

In China, encoders typically require 5V or 12V power supplies, while in some countries, encoders mostly require 5V. Please select the appropriate power supply according to the encoder model.

Resolution, defined as the pulse count per revolution from the encoder, should align with the intended design accuracy. Please set the frequency division function based on the pulse signal receiving frequency.

-141-

Choose the PG card output signal receiving device based on actual needs: OC output for PLC monitoring equipment, and differential output for specialized, interference-resistant applications.

Note:

The recommended model for incremental encoder PG card is PG01-ABZ-05-C1, please refer to the ordering notice for other products.

The recommended model for the rotary encoder PG card is PG01-RT, please refer to the ordering notice for other products.

4. Incremental Encoder PG Card Use Guide

Technical	specifications
-----------	----------------

Product			Input s	ignal eristics	Output signal characteristics	
Model	Supply	Function	Response frequency range	Input impedance	Output Frequency range	Output current
AC200PG01		Disconnection Detection			0kHz~80kHz,	
AC200PG02	5V±5% 200mA	Disconnection Detection Frequency Dividing Output	Differential 0kHz~80kHz	About 1kΩ	0kHz~80kHz, Frequency dividable	≤100mA

Terminal function introduction

The incremental encoder PG card terminal arrangement is shown as below:

Main signal terminal function description

Definition	Name	Function		
1	PE	Grounding		
2	VCC	+5V output power supply (for encoder)		
3	GND	Output signal power supply reference		
4	A+	Differential input A+ signal		
6	A-	Differential input A- signal		
6	B+	Differential input B+ signal		
Ø	В-	Differential input B- signal		
8	Z+	Differential input Z+ signal		
9	Z-	Differential input Z- signal		
0	OA	OC frequency dividing output A		
1	OB	OC frequency dividing output B		
12	СОМ	OC frequency dividing output common reference		

Note: The above description is for AC200PG01 and AC200PG02.

K5 DIP switch description (for AC200PG02 only): OFF-the shield ground off, ON-the shield ground on.

Terminal function selection description

Function	Position	Illustration	Description															
				fo=fi														
																	4 3 2 1 NO	fo=fi/2
									fo=fi/4									
frequency division coefficient	SW1		fo=fi/6															
selection terminal																		
			fo=fi/28															
						fo=fi/30												

5. Installation and Dimensions

• Installation schematic

• Installation dimensions

6. Electrical Connection and Use Guide

Electrical connection diagram

• Integrated Wiring Diagram

Integrated wiring diagram

• Wiring for application

Differential output encoder wiring

Use Guide

A. Install the PG card according to the "Installation schematic";

B. Connect the PG card to the encoder according to "Electrical connection diagram";

C. Set the drive related parameters according to the actual use. The following parameters are specifically addressed:

Code	Name	Description	Default	Property	Address
F0.00	Motor Control Mode	Asynchronous motor (AM) control: 0: SVC1 3: SVC2 4: FVC	0	0	0x000
F5.30	Speed Feedback or Encoder Type	Ones-bit: Encoder typeSettheencodertypeaccordingtotheactualsettingoftheselectedencoder0: Common ABZ encoder1: Rotary transformer (RT)Tens-bit:EncoderTens-bit:EncoderdirectionWhen the motor speed andite encoder speed detectiondirection are not consistent,changethe directionsetting this parameter0: Same directionHundreds-bit:Disconnection detectionWith disconnection detectionis ON, the AC drive willreport an encoder fault andstops when the encoder is0: OFF1: ON0: OFF1: ON	0000	Ο	0x51E
F5.31	ABZ Encoder Line No.	Used to set the number of ABZ encoder lines, please	1024	0	0x51F

		set according to the sensor specifications. Range: 1~10000			
FF.71	PG Disconnection Detection Time	Range: 10ms~3000ms	50ms	0	0xF47
FF.72	PG Disconnection Detection Selection	Ones-bit: A/B disconnection detection 0: OFF 1: ON Tens-bit: Z disconnection detection 0: OFF 1: ON Hundreds-bit: Reserved Thousands-bit: Reserved	0001	0	0xF48

Gound Description

In FVC mode, the shield layer of encoder cable to the motor side should be grounded reliably, so as to shield feedback signals from EMI. But, do not ground the encoder cable shield to the drive PG card side (as illustrated below).

Appendix I: RS485 Communication

• Communication protocol

The AC70T series drive is equipped with RS485 communication interface as standard, and its communication adopts international standard Modbus protocol. Via PC/PLC or master AC drive, centralized control (which allows for AC drive commands setting, operational frequency setting, function parameters adjustment, and AC drive status and faults monitoring) can be realized to satisfy unique application requirements.

• Application mode

1. The AC70T series drive is connected to a "single-master multi-slave" control network with an RS485 bus. For a broadcast message sent by the master, the slaves will not reply (slave address is 0).

2. The AC70T series provides only RS485 interface for asynchronous half-duplex communication. If the communication port of external equipment is RS232, please add an RS232/RS485 converter.

3. Modbus protocol defines the content and format of asynchronous transmission in serial communication, which can be divided into RUT and ASCII mode. And the AC70T series is in RTU (Remote Terminal Unit) mode.

• Communication frame structure

The format of communication frame is shown below:

Byte components: start bit, 8 data bits, parity bit and stop bit.

Start	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Parity	Stop
bit									bit	bit

The entire message must be transmitted as as a continuous stream. If a silent interval of more than 1.5 bytes occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte will be the address field of a new message. Similarly, if a new message begins earlier than 3.5 character times following a previous message, the receiving device will consider it a continuation of the previous message. This will set an error, as the value in the final CRC field is not correct.

Standard structure of an RTU frame:

Frame header	Transmission time for 3.5 bytes	
Slave address	Communication address:	

	0~247 (0 is the broadcast address)
Command code	03H: Read slave parameters 06H: Write slave parameters 08H: Circuit self-detection
Data field	Parameter address, number of parameters, parameter value,
CRC CHK low byte	Check value: 16-bit CRC value
CRC CHK high byte	
End of the frame	Transmission time for 3.5 bytes

In RTU mode, a new frame requires to start with a transmission pause interval of at least 3.5 character. Then data fields are sent sequentially: slave address, command code, data, and CRC checksum, with each field's transmission byte in hex format, ranging from 0~9 and A~F. The network devices keep monitoring the network bus, even during the silent interval. After receiving the first field (address field), each device decodes the field to determine whether itself is the destination device. After the final byte of these words has been transmitted, there is a minimum of a 3.5-byte transmission pause interval to indicate the end of this frame. And a new message is sent after this interval.

• Command code and communication data description

Command code: 03H, it allows for reading N words, up to 5 words consecutively.

Example: If an AC drive with a slave address of 01H and a memory starting address of 2100H (C-00) that reads three consecutive words, the framing is described as follows:

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	03H
Starting address high byte	21H
Starting address low byte	00H
No. of data high byte	00H
No. of data low byte	03H
CRC CHK low byte	0FH

RTU master command

CRC CHK high byte	F7H
END	Transmission time for 3.5 bytes

RTU slave response (normal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	03H
Byte count low position	06H
Data address 2100H high position	13H
Data address 2100H low position	88H
Data address 2101H high position	00H
Data address 2101H low position	00H
Data address 2102H high position	00H
Data address 2102H low position	00H
CRC CHK low byte	90H
CRC CHK high byte	АбН
END	Transmission time for 3.5 bytes

RTU slave response (abnormal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	83H
Fault code	04H
CRC CHK low byte	40H
CRC CHK high byte	F3H
END	Transmission time for 3.5 bytes

Command code: 06H, write one word.

Function: It allows for writing one word into the designated address, which can be used to modify the AC drive parameters.

Example: Write 5000 (1388H) to the address 3000H of the AC drive at slave address 1.

The description for the fame format is as below:

RTU master command

START	Transmission time for 3.5 bytes
Slave address	01H

Command code	06H
Write data address high position	30Н
Write data address low position	00H
Data content high byte	13H
Data content low byte	88H
CRC CHK low byte	8BH
CRC CHK high byte	9СН
END	Transmission time for 3.5 bytes

RTU slave response (normal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	06H
Write data address high position	30H
Write data address low position	00H
Data content high byte	13H
Data content low byte	88H
CRC CHK low byte	8BH
CRC CHK high byte	9СН
END	Transmission time for 3.5 bytes

RTU slave response (abnormal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	86H
Fault code	01H
CRC CHK low byte	83H
CRC CHK high byte	А0Н
END	Transmission time for 3.5 bytes

Command code: 08H, circuit self-detection.

Function: It sends back the same slave response information as the command information of the master, which is applied to check whether the signal transmission between the master and the slave is normal or not. The check code and data can be set arbitrarily.

RTU master command

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	08H
Check code high byte	00H
Check code low byte	00H
Data high byte	13H
Data low byte	88H
CRC CHK low byte	EDH
CRC CHK high byte	5DH
END	Transmission time for 3.5 bytes

RTU slave response (normal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	08H
Check code high byte	00H
Check code low byte	00H
Data high byte	13H
Data low byte	88H
CRC CHK low byte	EDH
CRC CHK high byte	5DH
END	Transmission time for 3.5 bytes

RTU slave response (abnormal)

START	Transmission time for 3.5 bytes
Slave address	01H
Command code	88H
Fault code	03H
CRC CHK low byte	06H
CRC CHK high byte	01H
END	Transmission time for 3.5 bytes

Communication frame parity mode

Standard Modbus serial communication adopts two kinds of error checking methods.

Parity check is for each characteristic and the Cyclical redundancy check (CRC) is for a frame.

1. Parity Check

Users can configure controllers for odd or even parity check, or for no parity check. This will determine how the parity bit is set in each character.

If either even or odd parity is specified, the quantity of "1 " bits will be counted in the data portion of each character (7 data bits for ASCII mode, or 8 for RTU). For example, the RTU character frame contains the following 8 data bits: 11000101.

And the total quantity of "1" is 4. If even parity is making sets the, the frame's parity bit will be a 0, making the total quantity of "1" remains 4. If odd parity check is making sets the, the frame's parity bit will be a 1, making the total quantity of "1" is 5.

If no parity bit is specified, no parity bit is transmitted and no parity check can be made. An additional stop bit is transmitted to fill out the character frame.

2. CRC-16 (Cyclical Redundancy Check)

In RTU mode, messages include an error-checking field that is based on a CRC method. The CRC field checks the contents of the entire message. The CRC field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the transmitting device. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results.

The CRC is started by first storing 0xFFF. Then a process begins of applying successive 6-bit bytes of the message to the current contents of the register. Only the 8Bit data in each character is valid for CRC. Start and stop bits, and the parity bit are invalid.

During the generation of the CRC, each 8–bit character is exclusive ORed (XOR) with the register contents. Then the result is shifted in the direction of the least significant bit, with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place. This process is repeated until eight shifts have been performed. After the last (8th) shift, the next 8–bit byte is exclusive ORed with the register's current value. The final contents of the register, after all the bytes of the message have been applied, is the CRC value.

This calculation of CRC adopts the international standard CRC checksum rule. When editing the CRC algorithm, users can refer to the relevant standard CRC algorithm to write a CRC calculation program that truly meets the requirements.

```
unsigned int crc chk value(unsigned char *data value, unsigned char length)
ł
unsigned int crc value = 0xFFFF;
int i:
while (length--)
ł
crc value^=*data value++;
for(i=0;i<8;i++)
ł
if(crc value&0x0001)
ł
crc value=(crc value>>1)^0xa001;
}
else
{
crc value=crc value>>1;
}
return(crc value);
}
```

Here is a simple CRC function for user reference (programming in C language):

• Data Address Definition

This section describes the communication data used to control the operation, status, and parameter setting of the AC drive.

A. AC70T Series Parameter Address Definition

The AC drive function parameter serial number is used as the register address, which is divided into two parts: the high byte and the low byte. The high byte indicates the serial number of the function parameter group, and the low byte indicates the serial number of the function parameter in the group, which needs to be converted to hexadecimal.

Address	field	high	byte:
---------	-------	------	-------

Parameter group	Corresponding first parameter address
F0 basic parameters	0x0000 (not stored in EEPROM)

	0x1000 (stored in EEPROM)	
	0x0100 (not stored in EEPROM)	
F1 motion control parameters	0x1100 (stored in EEPROM)	
	0x0200 (not stored in EEPROM)	
F2 switch terminal parameters	0x1200 (stored in EEPROM)	
	0x0300 (not stored in EEPROM)	
F3 analog terminal parameters	0x1300 (stored in EEPROM)	
E4 Look and a sumation	0x0400 (not stored in EEPROM)	
F4 keyboard parameters	0x1400 (stored in EEPROM)	
D5	0x0500 (not stored in EEPROM)	
F5 motor parameters	0x1500 (stored in EEPROM)	
EC	0x0600 (not stored in EEPROM)	
F6 vector control parameters	0x1600 (stored in EEPROM)	
E7 +	0x0700 (not stored in EEPROM)	
F / torque control parameters	0x1700 (stored in EEPROM)	
TO X7/E	0x0800 (not stored in EEPROM)	
F8 V/F control parameters	0x1800 (stored in EEPROM)	
	0x0900 (not stored in EEPROM)	
F9 tension control parameters	0x1900 (stored in EEPROM)	
	0x0A00 (not stored in EEPROM)	
FA fault protection parameters	0x1A00 (stored in EEPROM)	
	0x0B00 (not stored in EEPROM)	
FB process PID control parameters	0x1B00 (stored in EEPROM)	
FC multi-speed, PLC and swing	0x0C00 (not stored in EEPROM)	
frequency parameters	0x1C00 (stored in EEPROM)	
FD communication control	0x0D00 (not stored in EEPROM)	
parameters	0x1D00 (stored in EEPROM)	
	0x0E00 (not stored in EEPROM)	
FE reserved	0x1E00 (stored in EEPROM)	
	0x0F00 (not stored in EEPROM)	
FF reserved	0x1F00 (stored in EEPROM)	
C monitoring parameters	0x2100	
Communication control parameters	0X3000 or 0x2000	

Note: There is a possibility of frequent rewriting of parameter values for communication. And the service life of EEPROM can be reduced due to excessive write operations. Users do not need to save specific function codes in communication mode; adjusting the values in the on-chip RAM is adequate for their requirements. The AC70T protocol dictates that for the write command (06H), if the highest bit in the function code's address field is 0, it is only written in AC drive's RAM, namely, data will not be stored in power loss, if the high nibble is 1, it is written to EEPROM, namely, data will be stored in power loss.

Take rewriting the function parameter [F0.14] as an example, if it is not stored in the EEPROM, the address is 000EH, and if it is stored in the EEPROM, the address is 100EH.

Function	Address	Description		R/W	
Communication given frequency	0x3000 or 0x2000	0~32000 corresponds to 0.00Hz~320.00Hz		W/R	
		0000H:	none		
		0001H: forward operation			
		0002H: reverse operation			
Communication	0x3001 or	0003H: forward jogging		W	
given command	0x2001	0004H: reverse jogging		**	
		0005H: deceleration stop			
		0006H:	free stop		
		0007H:	fault reset		
		Bit0	0: stop	1: running	
	0x3002 or	Bit1	0: non-	1: accelerating	
AC drive status	0x2002	Bit2	0: non-	1: decelerating	R
		Bit3	0: forward	1: reverse	
		Bit4	0: AC drive	1: AC drive faulty	
AC Drive fault code	0X3000 or 0x2003	Current fault code (see fault code table)		R/W	
Communication given upper limit frequency	0X3004 or 0x2004	0~32000 corresponds to 0.00Hz~320.00Hz		W	
Communication given torque	0X3000 or 0x2005	0~2000 corresponds to 0.0%~200.0%		W	
Torque-controlled FWD max. frequency	0x3006 or 0x2006	0~32000 corresponds to 0.00Hz~320.00Hz		W	
Torque-controlled REV max. frequency	0x3007 or 0x2007	0~32000 corresponds to 0.00Hz~320.00Hz		W	
Communication given PID	0x3008 or 0x2008	0~1000 corresponds to 0.0%~100.0%		W	

B. Communication Control Group Address

Communication given PID feedback	0x3009 or 0x2009	0~1000 corresponds to 0.0%~100.0%	W
Communication given tension	0x300A or 0x200A	0~Max. Tension [F9.04]	W
Communication given roll diameter	0x300B or 0x200B	0~Max. roll diameter [F9.12]	W
Communication given linear speed	0x300C or 0x200C	0~Max. linear speed [F9.26]	W
Communication given thickness	0x300D or 0x200D	0~Max. thickness [F9.38]	W

Slave Abnormal Response Code Description:

Error	Description
1	Command code error
2	Reserved
3	CRC parity error
4	Wrong address
5	Wrong data
6	Parameters cannot be changed during operation
7	Reserved
8	Drive busy (EEPROM storage in progress)
9	Parameter value overrun
10	Reserved parameters not for modification
11	Error in reading parameter bytes

Appendix II: EMC Compliance

The EMC product standard (EN 61800-3:2004) illustrates EMC requirements for AC drives. Environment Classification:

First Environment: Domestic premises. This includes applications directly connected without intermediate transformers to a low-voltage power supply network for domestic purposes. Second Environment: This includes all facilities other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes. Drive Category:

Category C1: Drive with rated voltage below 1000V, intended for use in the first environment. Category C2: Drive with rated voltage below 1000V, which is neither a plug-in device/socket nor a movable device. When used in the first environment, it must be installed and operated by professional personnel.

Note: The EMC standard IEC/EN 61800-3 no longer restricts the drIverson distribution, but defines use, installation and commission. Professionals or organizations tasked with installing or commissioning electrical drive systems must possess essential skills and knowledge of EMC. AC70T series: Technical data

Category C3: Drive with rated voltage below 1000V, intended for use in the second environment and not applicable to the first environment.

Category C4: Drive with rated voltage over 1000V, or rated current no less than 400A, or intended for use in complex systems in the second environment.

For C2

Conducted disturbance limits adhere to the following standards:

1. Select the optional EMC filter according to "Peripheral Options" and install it according to the instructions in the EMC filter manual.

2. Select the motor and control cable according to the instructions in this manual.

3. Install the drive according to the method described in this manual.

This product may generate radio interference, requiring the additional mitigation measures. For C3

The drive's interference resistance complies with IEC/EN 61800-3 standards for the second environment.

Conducted disturbance limits adhere to the following standards:

1. Select the optional EMC filter according to "Peripheral Options" and install it according to the instructions in the EMC filter manual.

-159-

2. Select the motor and control cable according to the instructions in this manual.

3. Install the drive according to the method described in this manual.

C3 drive cannot be used in a domestic low-voltage public grid. Otherwise, it will produce radio frequency electromagnetic interference.