

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 1 / 35

Product Usage Instructions

VC5 Series PLC Custom Variable Usage Instructions

Suzhou VEICHI Electric Technology Co. Ltd

2023/6

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 2 / 35

Catalog

1. Variables .. 4

1.1 Custom Variables ... 4

1.2 Define Variables .. 4

1.3 Defining Arrays ... 6

1.4 Defining Structs ... 7

1.5 How to use variables .. 8

2. Binding of Variable Addresses ... 9

2.1 Overview .. 9

2.2 Variable Properties .. 9

2.3 Array Variable Binding Soft Components .. 9

2.4 Structure Variable Binding Soft Components ... 10

3. Using Variables As Array Subscripts ... 12

3.1 Rules of Use ... 12

3.2 Programming Examples ... 12

3.2.1 Example 1 .. 12

3.2.2 Example 2 .. 14

3.2.3 Example 3 .. 15

4. Pointer Type Variables .. 16

4.1 Definition of Pointer Type Variables .. 16

4.2 PT Pointer Address Operation ... 18

5. Function Block FB .. 21

5.1 New Function Block (FB) ... 21

5.2 Function Block Programming .. 22

5.2.1 Example - wrapping incremental count with FB ... 23

5.2.2 Function block import and export ... 24

5.2.3 Function block setting initial value ... 26

6. Function Block FC .. 28

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 3 / 35

6.1 New Function ... 28

6.2 Function Block Programming .. 28

6.2.1 Example - Wrapping addition functions with FC .. 29

6.2.2 Function block import and export ... 30

7. Timer Function Block ... 31

7.1 Timer Command Parameters ... 31

7.2 Command List ... 31

7.2.1 DTPR ... 31

7.2.2 DTON .. 32

7.2.3 DTOF ... 33

7.2.4 DTACR .. 34

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 4 / 35

1. Variables

1.1 Custom Variables

In the VC5 programming system, in addition to programming directly using direct addresses, such as X, Y, M, D, R and

other components for programming, it is also possible to program in the form of "variables" without specific storage

addresses to achieve the desired control logic, or the complete control process of the application object, which improves

the convenience and readability of code writing.。

Supported custom variables

Type Capacity Data Type Description

Pointer 4096 Point（32bit） BOOL/ INT/ DINT/ REAL Arrays Pointer variables；

Power down is not saved；

BOOL

2MB（8 bit）

INT/ DINT/ REAL Variables，

INT/ DINT/ REAL Arrays，

INT/ DINT/ REAL Combination

Structures

256KB power down save，

Other power down is not

saved；

INT

DINT

REAL

1.2 Define Variables

VC5 supports custom variables, and users can program directly with variable names in their programs by defining global

variables and variable tables.

The following rules need to be followed when defining variable names:

1．Maximum length of 64 bytes；

2. Can only be composed of "_, letters, numbers, Chinese characters" and cannot start with "_, numbers"；

3. Cannot be renamed with "soft component forms, constants, standard data types, instructions"；

4. Cannot be "ARRAY, TRUE, FALSE, ON, OFF, NULL" and other keywords。

Variable data type

Variable definitions support structures and arrays, and variable data types are supported as follows:

Variable data type

Data Type Description

BOOL Boolean type

INT Single-word integer type

DINT Double-word integer type

REAL Real Number Type

Define Variables

The "Global Variables" in the Project Management section of the Auto Studio programming software is used for variable

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 5 / 35

management, which allows you to add, delete and edit variables.。

1. Add variable table and variables: right-click "Variable Table" and select "New Variable Table" to create a new variable

table.。

2. Double-click the variable table to enter the variable editing interface

● In the variable table, right mouse click on the pop-up menu, you can insert or delete variables

● If you enter a custom variable name in the variable name column of the variable table, you can program directly with the

variable name when programming.

● Data types can be selected from BOOL, INT, DINT, REAL, as well as arrays and structures (structures need to be defined

in advance). When you select array as the data type, you can set the type and length of the array variable in the pop-up

dialog box, and when you select a previously defined structure, you can define the structure variable.

● The initial value column can define initial values for variables, and arrays and structures can define initial values for each

element individually

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 6 / 35

● Power-down hold can be selected for both hold and non-hold types, and the initial value setting is only valid for non-

hold variables.

1.3 Defining Arrays

User programming can define arrays if the data type selected is ARRAY。

1. In the pop-up dialog box, select the type and length of the array variable, and click "OK" to define the array.。

2. Click the initial value column of the array variable to enter the initial value setting interface of the array variable:

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 7 / 35

When an array is used in the command, the access starts from the element specified by the subscript of the array。

For example:

●Assign 6 elements of var_array [0] to var_array [5] to D0-D5

1.4 Defining Structs

If you need to define a structure variable in the variable definition, you need to define the data structure of the structure in

advance. Right-click "Structure" under "Global Variables", select "New Structure", and enter the name of the structure to

define the structure. When you define the variable in the variable table, you can select the structure type as the data type of

the variable and define the variable as a structure variable.。

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 8 / 35

After creating structure and member variables, you can define structure variables by selecting structure in the data type of

variable definition

Click the Initial value column of a structure variable to enter the initial value setting interface of the structure variable, and

you can set the initial values of the structure variable members.。

1.5 How to use variables

Once the variables are defined, the variable names can be used directly in programming the program without the need to

assign soft components。

● Direct variable programming operations.

● When using array variables, the program uses "[number]" to represent the array elements, starting from 0.

● When using structure variables, program "structure variable name. Member Variable" to indicate a member of a structure.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 9 / 35

2. Binding of Variable Addresses

2.1 Overview

The custom variables in VC5 support binding the addresses of soft components, and the addresses of custom variables

are associated with the addresses of soft components after binding. To implement the function of custom variable binding

software, just fill in the address field in the variable table with the address you need to associate, and then compile the

project after inputting, the software will automatically generate the assigned address。

2.2 Variable Properties

After a custom variable is bound to a soft component, the power-down hold property will follow the bound soft component.

As shown in the figure below, M100 is in the power-down hold area, so after Var_2 is bound to it, the power-down hold

property becomes hold type accordingly, while D100 is in the non-power-down hold area, then Var_3 is bound to it as non-

power-down hold type.

After binding the component, the power-down hold property will change automatically according to the situation, and the

user does not need to set it.

2.3 Array Variable Binding Soft Components

To bind soft components to an array variable, simply fill in the address field in the variable table with the address to be

mapped.

1. Word variables occupy the corresponding number of subcomponents according to the variable type, one INT variable

occupies one 16-bit component, and one REAL, DINT variable occupies two 16-bit components.

2. BOOL variables occupy the corresponding number of bit components.

3. Array variables can only bind soft components of corresponding types, i.e. word variables can only bind word

components and bit variables can only bind bit components.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 10 / 35

For example, if you define an array variable of BOOL type Array_0 with length 10 and specify to bind M0

components, it will occupy components M0-M9; if you define an array variable of INT type Array_1 with length 10

and specify to bind D0 components, it will occupy components D0-D9.。

2.4 Structure Variable Binding Soft Components

When binding soft components through structure variables, just fill in the address column in the variable table (note: the

address can only be a word component, not a bit component), after filling in the address, click "Compile", the address of

the structure member will be automatically generated by Auto Studio, the specific address assignment rules are as follows.

1. INT-type variables occupy one 16-bit component, and REAL and DINT-type variables occupy two 16-bit components.

2. Consecutive multiple BOOL types as a whole are aligned by 16 bits, that is, the first allocation address of 16-bit soft

component bit0 for consecutive BOOL type members, and the allocation addresses of consecutive multiple BOOL type

variables are incremented by 1 bit in turn; for non-consecutive BOOL types, each is handled independently by 16-bit

alignment.

3. Arrays and structure variables are aligned by 16 bits as a whole.

For example, define a variable Struct_1 of type Struct and specify the binding D1000 component

● Struct t_1. member_1 // Type is BOOL, so bind D1000.0

●Struct_1. member_2 // type is an INT array, so bind D1001, D1002

● Struct_1. member_3 // Type is BOOL type array, so bind D1003.0, D1003.1

● Struct_1. member_4 // Type is DINT, so bind D1004

● Struct_1. member_5 //REAL，Therefore binding D1006

● Struct_1. member_6 // Type is INT, so bind D1008

● Struct_1. member_7 // Type is BOOL, so bind D1009.0

1. Structs are bound like other variables, just fill in the address field in the variable table with the address to be mapped.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 11 / 35

After entering the address of the soft component, you need to compile the project, which will automatically generate

the assigned address, then double-click the initial value column of the corresponding structure variable in the variable

table, you can see the mapped address of each member of the structure and set the initial value of the variable。

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 12 / 35

3. Using Variables As Array Subscripts

3.1 Rules of Use

The general rule for using variables as array subscripts: at most one variable in the entire variable composition is

used as a subscript.

The format is defined as array[index] or stru[index].var, where array denotes an array or array of structures, index,

var, i denotes a variable, stru denotes a structure, and so on。

Basic combination types

● array variables, which are used as variables for arrays and only support arrays of bit variables, arrays of word variables,

arrays of double word variables, arrays of floating-point variables, etc., and do not support pointer variables;

● index variables, as variables with array subscripts, only support single word variables INT (16 bits) and double word

variables DINT (32 bits), no soft components, no other variables such as bit variables, floating point variables, pointer

variables, etc.; support a definite element of an array or a definite member of a structure as index variables, such as

array[index[5]], array[stru.index], and does not support array elements with variable subscripts or array members of a

structure as index variables, such as array[index[i]], array[stru[i].index];

Complex combination types

● Supports using elements of arrays (elements) as operands of instructions, i.e. index variables at the end, e.g.

array[index], stru. array[index], stru1[3]. stru2. array[index], stru1.stru2. stru3. array[index] etc.

● Supports using members of the array of structures as operands of the instruction, i.e. the index variable is placed in

the middle, e.g. stru[index]. Var, stru1[index]. stru2.var, stru1.stru2[5]. stru3[index]. array [3] etc.。

● The use of a single structure element in an array of structures as an operand of an instruction is not supported, i.e.,

the index variable is placed at the end, such as stru[index], stru1.stru2. stru3[index], stru1.stru2[2]. stru3.stru4[index],

etc.

● Arrays of structures with double or multiple variables, such as stru[index1]. array[index2], are not supported.

● Two-dimensional or multi-dimensional arrays array[index1] [index2] are not supported.

3.2 Programming Examples

3.2.1 Example 1

To assign a value to an element of an array, the program is as follows:

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 13 / 35

Start assigning 123 to i16arr [1], after that, each time M100 is triggered, it will assign 666 to the array elements behind it

in a smooth manner; after starting:

After M100 triggers once:

M100 after multiple triggers:

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 14 / 35

3.2.2 Example 2

Operate on a member variable of a structure array, structure definition:

After M101 is triggered, Struct_arr [2]. b_enable is set, and according to its state, Struct_arr [3]. b_enable is controlled:

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 15 / 35

3.2.3 Example 3

FB parameters use variables as array subscripts, and the program is as follows:

The FB program is as follows:

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 16 / 35

After M102 is triggered, the value 88 is assigned to i16arr [2], and after FB calculation, the value is assigned to i16arr

[5]. The procedure of FB is to add 1 to the input parameter and assign it to the output。

4. Pointer Type Variables

4.1 Definition of Pointer Type Variables

A pointer variable can be used as a pointer to store the address of a soft component or an array variable, and can be used

as indirect addressing or variable addressing when programming a program.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 17 / 35

A pointer variable is defined when the variable name is defined in the variable table and "POINTER" is selected as the data

type. The initial value of a pointer variable is NULL, i.e., a null pointer, and a pointer variable is not held when power is

lost.

Pointer type variables can do address operations and indirect addressing operations. When using the pointer address

operation instruction, it indicates the address operation of a pointer. The instructions that support pointer address operations

are listed below. When using these instructions, the functions of fetching address, pointer address offset, and pointer address

comparison are implemented.

Instructions for pointer address operations

Instruction Description

PTGET Pointer variable assignment instructions

DPTGET Pointer variable assignment instruction (double word)

RPTGET Pointer variable assignment instruction (floating point)

PTINC Pointer variable address increment 1 instruction

PTDEC Pointer variable address minus 1 instruction

PTADD Pointer variable addition instructions

PTSUB Pointer variable subtraction instructions

PTMOV Pointer variable address mutual assignment instruction

PTLD= Pointer variable contact comparison equals instruction

PTLD< Pointer variable contact comparison less than instruction

PTLD> Pointer variable contact comparison is greater than the instruction

PTLD<> Pointer variable contact comparison does not equal instruction

PTLD>= Pointer variable contact comparison is greater than or equal to the

instruction

PTLD<= Pointer variable contact comparison less than or equal to

instruction

PTAND= Pointer variable and contact comparison equals instruction

PTAND< Pointer variable and contact comparison less than instruction

PTAND> Pointer variable with contact comparison larger than the

instruction

PTAND<> Comparison of pointer variables and contacts is not equivalent to

the instruction

PTAND>= Pointer variable and contact comparison is greater than or equal

to the instruction

PTAND<= Pointer variables are compared with contacts less than or equal to

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 18 / 35

the instruction

PTOR= Pointer variable or contact comparison equals instruction

PTOR< Pointer variable or contact comparison less than instruction

PTOR> Pointer variable or contact comparison is greater than the

instruction

PTOR<> Pointer variables or contact comparisons are not equivalent to

instructions

PTOR>= Pointer variable or contact comparison greater than or equal to

instruction

PTOR<= Pointer variable or contact comparison less than or equal to

instruction

Except for the instructions in the table above that operate on pointer addresses, other instructions that use pointer

type variables indicate indirect addressing operations on pointer type variables, i.e., operations on the values of soft

components or array variables pointed to by pointer type variables. Indirect addressing of pointer variables is

indicated by "*pointer type variable" in programming。

Example

● Address manipulation of pointer type variables

● Indirect addressing of pointer type variables

The programming software will automatically add "*" in front of variables of pointer types used in instructions other than

those in the above table for pointer address operations.

4.2 PT Pointer Address Operation

1. Getting the pointing address of a pointer variable

The pointer type variable pointing address can be obtained by the pointer variable assignment instruction (PTGET).

Example 1

When the instruction energy stream is valid, the pointer types variable PT0 points to D10, i.e. PT0 gets the address of D10

soft component.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 19 / 35

Pointer type variables can point to bit components (X, Y, M, S), word components (D, R, W), and custom array variables.

After a pointer type variable acquires a pointer address, you can add or subtract operations to the pointer address of the

pointer type variable to indicate the component offset to which the pointer types variable points.

Example 2

If the instruction is valid, it will offset the soft component pointed by the pointer variable PT0 by one. If PT0 points to D10,

after executing PTINC instruction, PT0 points to D11. After executing PTINC, the system will automatically adapt the

offset by one according to the type of component or array variable pointed by the pointer variable.

PT0 Current Pointer PT0 pointer after executing PTINC

D10 D11

M200 M201

Array [2] Array [3]

Example 3

If the instruction is valid, the offset of the soft component pointed by the pointer variable PT0 will be reduced by one. For

example, if PT0 points to D10, after executing PTINC instruction, PT0 points to D9. After executing PTDEC, the system

will automatically adapt the offset minus one according to the type of component or array variable pointed by the pointer

type variable.

PT0 Current Pointer PT0 pointer after executing PTDEC

D10 D9

M200 M199

Array [2] Array [1]

Example 4

When the instruction is valid, the soft component offset pointed by the pointer address of PT0 is assigned to PT1 by 5, e.g.

PT0 points to D10, after executing the example instruction, PT1 points to D15.

When the instruction is valid, the soft component offset of the PT0 pointer address will be assigned to PT0 by 5, e.g. PT0

originally points to D10, after the execution of the example instruction, PT0 points to D15.

Example 5

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 20 / 35

When the instruction is valid, the soft component offset of the pointer variable PT0 is assigned to PT1 minus two, e.g. PT0

points to D10, after the execution of the example instruction, PT1 points to D8.

PT0 Current Pointer After executing the command

PT1 Pointer PT0 Pointer

D10 D8 D10

When the instruction energy stream is valid, the soft component offset of the PT0 pointer address minus 2 is assigned to

PT0, e.g. PT0 originally points to D10, after executing the example instruction, PT0 points to D8.

Example 6

Pointer assignment to each other is the address backup of pointer variables, i.e., pointing to the same address；

When the instruction energy stream is valid, the PT1 pointer points to the position of the PT0 pointer, i.e., D10

All of the above examples require the PTGET instruction to obtain the pointer address first; when PT points to an array

variable, pay attention to the out-of-bounds check when executing the address operation instruction

Example 7

The contact comparison of a pointer is a comparison of the address of the pointer pointing to a soft component with

the address of the object of comparison

The PT< instruction checks the address of the pointer type variable PT0 to determine whether it is greater than the D

address, e.g., if the PT0 pointer points to D10, a comparison with D5 will output Y0 as OFF, and a comparison with D20

will output Y10 as ON. similar check instructions PT>=, PT<, PT<=, PT=, PT<> can implement the PT pointer pointing

judgment check

Example 8

Indirect Addressing of Pointer Type Variables

Pointer type variables can be used in instructions that represent indirect addressing operations on soft components or array

variables pointed to by the pointer variable after the address has been obtained through the address operation instruction

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 21 / 35

When the instruction energy stream is valid, the soft component pointed by the pointer type variable PT0 is added to D100.

If PT0 points to D10, the result of the instruction execution is D300 = D10 + D100。

Description: To use a pointer type variable to indirectly represent the soft component it specifies; a valid pointer address

must first be obtained through the pointer address operation instruction.

5. Function Block FB

A function block (FB) can abstractly encapsulate reused parts of a program into a common block that can be called

repeatedly in the program. The use of encapsulated function blocks in programming increases the efficiency of program

development, reduces programming errors, and improves program quality. Function blocks are capable of generating one

or more values during execution. Function blocks retain their own special internal variables, and the controller execution

system allocates memory to the internal state variables of the function block, which constitute their own state characteristics.

For the same parameter input variable value, which may exist in different internal state variables, different calculation

results will be obtained.

The basic steps of using function blocks are: New function block -> Function block programming -> Function block

instantiation -> Run function block -> Package export function block -> Import function block.

5.1 New Function Block (FB)

With Auto Studio software, you can create new function blocks

Right-click "FB Function Block" under the "Program Block" node and select New to complete the function block creation.

The function block name can be modified by the function block properties.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 22 / 35

5.2 Function Block Programming

Double-click the newly created function block under the "Function Block (FB)" node to enter the function block program

editing interface. Compared with the normal program editing interface, the function block program editing interface has an

additional input/output and local variable definition window.

1. Variable name: The name of the variable

2．Variable type: attribute of function block variable

Variable Type Type Description Description

IN Input Variables Parameters are provided by the logical block that calls it, and input is passed to the

logical block's instructions

OUT Output Variables Provide parameters to the logical block that calls it, i.e. output structural data from the

logical block

IN_OUT Input and output

variables

Input and output variables can not only be passed into the called logic block, but can

also be modified inside the called logic block

TEMP Local variables Valid only in this logical block and cannot be accessed externally.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 23 / 35

3．Data Type

Variable data types support BOOL, INT, DINT and REAL, and array variables and structures can be defined. If you use

structure variables, you need to create structure members in the structure of global variables

4．Initial Value

Set the initial data at the beginning of variable execution.

5．Power down hold

The power-down hold property can set the variable as a hold or non-hold property

● "Non-hold", the variable reverts to the value set in the initial value after power-up；

● If "Hold" is checked in the system parameters, such as "Initialize power-down hold variables when downloading", the

variables will be restored to the values set in the initial values when the program is downloaded, otherwise the last run

value will be maintained.

Function block programs are programmed using ladder diagrams. Inside the function block program, functions (FC) or

function blocks (FB) can be called, supporting up to 6 levels of nested calls, the

MAIN -> FB_01 -> FB_02 -> FB_03 -> FB_04 -> FB_05 -> FB_06.

Function block programs can use soft components supported by VC5 as global variables in addition to variables, such as

SM0

5.2.1 Example - wrapping incremental count with FB

1. The FB program is programmed as follows:

2. Function block instantiation calls

After writing the FB program and using it in the application, you need to instantiate the function block to call

Edit instruction parameters and assign variable names as required by the program to complete the instantiation of function

block calls.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 24 / 35

3. Run function blocks

When the function block is instantiated, the En of the function block is connected to the ladder network. when the En

network energy flow is active (ON), the function block program is executed and the output of the function block is refreshed

and changed according to the input condition and the internal variable state. when the En network energy flow is active

(OFF), the function block program is not executed and the function block output is not refreshed.

The counter function block CUT energy flow condition is ON, the function block is executed, and the output CV is added

1 when the input condition CU rising edge changes.

Counter function block CUT energy flow condition is OFF, the function block is not executed, and the output CV is not

refreshed when the input condition CU rising edge changes

5.2.2 Function block import and export

Function block export

The edited and debugged function blocks can be wrapped into files. The function blocks encapsulated into files can be

reused in different programs through Auto Studio's file management.

Under File Options, select "Program File Export", select the FB function block to be exported, set the export path, and

click Export Program.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 25 / 35

After the successful import of function blocks, the corresponding FB function block program file will be generated under

the path

Function block import

Function blocks exported as libraries can be called in other programs by means of import

Under File Options, select "Import Program Files", select the file storage path, select the FB function block to be imported,

and click Import Program.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 26 / 35

After the successful import, you can see the successfully imported function blocks under FB function blocks.

5.2.3 Function block setting initial value

The initial value of FB setting can be modified by either FB type or FB instantiator.

● If the initial value is modified by the FB type, it is equivalent to modifying the initial value of the type.

● If the initial value is modified by the FB instance, it is equivalent to modifying the initial value of the instance.

● If the initial value of the instance is modified, the FB instance member variable will show the modified value.

●If the initial value of the instance is not modified, the FB instance member variable displays the default value.

FB modify the initial value

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 27 / 35

FB function block is not enabled, open the function block, you can see the initial value of the function block

When the FB function block is enabled, the FB instance member variable will display the modified value

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 28 / 35

6. Function Block FC

Functions (FC) are independently encapsulated blocks that can define input/output type parameters and can define non-

static internal variables, i.e., the same output is obtained when a function is called with the same input parameters. The

important feature of a function is that its internal variables are static, there is no internal state storage, and the same input

parameters can get the same output, which is the main difference between a function (FC) and a function block (FB).

Function (FC), as a basic algorithmic unit, is commonly used in various mathematical operation functions, such as sin(x),

sqrt(x), etc. is a typical function type.

The basic steps for using functions are: New Function -> Function Programming -> Call Function -> Run Function ->

Wrap Export Function.

6.1 New Function

Right-click on "FC Function" under the "Program Block" node and select New to complete the function block creation.

The function block name can be modified by the function block properties

6.2 Function Block Programming

Double-click the new function under the "Function (FC)" node to enter the function editor interface. The function program

editor interface is similar to the function block, but compared with the normal program editor, there is an additional

input/output and local variable definition window

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 29 / 35

In the Input-Output and Local Variable Definition window, you can define input (IN), output (OUT), input-output (INTOUT)

and local variables (VAR) for function blocks. Variable data types support BOOL, INT, DINT and REAL, and array

variables and structures can be defined. If a structure variable is used, the Structure members need to be created in the

structures of global variables.

● In contrast to the variables of function blocks, function variables cannot define initial values and all local variables are

non-holding.

● Function programs are programmed using ladder diagrams, and inside function programs, functions (FC) can be called.

The function itself can be called by other functions, function blocks, and programs.

● Function programs can use SM0 as a constant ON variable in addition to variables.

● Instructions related to state or multi-cycle execution, such as LDP, MC_Power, etc., cannot be used in function programs.

6.2.1 Example - Wrapping addition functions with FC

1. The FC functions are programmed as follows:

2. FC function calls

After writing the FC program, you can use it in your application or call it directly to use it.

Edit the instruction parameters and assign variable names as required by the program to complete the instantiation call of

the function block.

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 30 / 35

3. Run the function

When the En network is active (ON), the function program is executed and the output of the function is refreshed according

to the input state operation; when the En network is active (OFF), the function program is not executed and the output of

the function block is not refreshed.

6.2.2 Function block import and export

The procedure for wrapping functions is similar to that for function blocks, please refer to the section "Import and Export

of Function Blocks".

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 31 / 35

7. Timer Function Block

7.1 Timer Command Parameters

The VC5 timers are categorized as pulse timer (DTPR), turn-on delay timer (DTON), turn-off delay timer (DTOF) and

time accumulation timer (DTACR).

The time base of the timer is 1ms, and the timer count value and status are updated when executing the timer instruction,

and the maximum number of timer instructions supported in the program is 4096. The parameters of these 4 timer

instructions are the same, and the parameters are as follows:

Name Define Data type instruction

IN Command Execution Input / Startup Input

PT input variable DINT
Preset timer（ms）

R input variable BOOL Reset Input

Q output variable BOOL Timer Output

ET output variable DINT
Current timer（ms）

7.2 Command List

The timer command covers the following command entries:

Instruction Type Name functionality

timer command

DTPR Pulse Timer

DTON Turn-on delay timer

DTOF Off Delay Timer

DTACR Time Accumulation Timer

7.2.1 DTPR

Pulse Timer-DTPR

ladder diagram:

Applicable models VC5

Affecting Flags

Instruction List: DTPR (S1) (S2) (D1) (d2) step

Operand style Applicable soft components
change

address

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 32 / 35

S1 DINT constant D\R\W
pointe

rs

customizab

le

S2 BOOL
X\Y\M\

S

pointe

rs

customizab

le

non-

speci

fied

D1 BOOL
Y\M\

S

pointe

rs

customizab

le

D2 DINT D\R\W
pointe

rs

customizab

le

non-

speci

fied

· Operator Description

S1: PT Preset timings, units ms

S2: R Reset

D1: Q Output result

D2: ET elapsed time in ms - DINT

· Functional Description

When the timer commands the input energy current to change from OFF to ON, the timer starts timing and the output Q

becomes ON, at which time Q remains ON for the time specified by the PT parameter regardless of the change in the input

energy current.

Q becomes OFF when the timing time reaches the time specified by the PT parameter.

During the timer timing operation, ET outputs the current timing time.

After the timer timing time reaches the time specified by the PT parameter, if the input energy flow is ON, the ET value is

held; if the input energy flow is OFF, the ET value is 0. During the timer timing process, if the reset input R is changed

from OFF to ON, the DTPR timer timing time is reset to 0, and the output Q is changed to OFF.

After the reset input R becomes OFF, the timer timing can be resumed if the IN-input energy current is valid.

· Parameter Description:

PT: set value range 0-2147483647ms (max. about 24 days); if PT set value is less than or equal to 0, according to 0 timing.

7.2.2 DTON

Turn-on delay timer-DTON

ladder diagram:

Applicable

models
VC5

Affecting Flags

Command list: DTON (S1) (S2) (D1) (d2) step

Operand Style Applicable soft components
change

address

S1 DINT Constant D\R\W pointers
customizabl

e

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 33 / 35

S2 BOOL
X\Y\M\

S
 pointers

customizabl

e

non-

specifie

d

D1 BOOL
Y\M\

S
 pointers

customizabl

e

D2 DINT D\R\W pointers
customizabl

e

non-

specifie

d

· Operator Description

S1 PT Preset timings, units ms

S2 R Reset

D1 Q Output result

D2 ET Elapsed time, units ms – DINT

· Functional Description

When the timer command input energy current changes from OFF to ON, the timer starts timing and output Q is OFF.

The timer runs for the time specified by the PT parameter during the period when the input energy current is held ON,

and Q changes to ON after the timing time reaches the time specified by the PT parameter.

During or after timing is completed, the input energy flow changes to OFF, and at the end of timing, Q changes to OFF.

When the input energy flow is OFF during the period, the Q output remains OFF. When the input energy flow is ON, ET

outputs the current timing time during the timer timing operation, and the ET value is maintained after the timer timing

time reaches the time specified by the PT parameter; if the input energy flow is OFF, the ET value is 0.

If the reset input R is changed from OFF to ON during the timer timing process, the DTON timer timing time is reset to

0, and the output Q is turned OFF. after the reset input R is turned OFF, to resume the timer counting, it is necessary to

change the IN-input energy current from OFF to ON again.

· Parameter description:

PT: set value range 0-2147483647ms (max. about 24 days); if PT set value is less than or equal to 0, according to 0 timing.

7.2.3 DTOF

ladder diagram:

Applicable

models
VC5

Affecting Flags

command list: DTOF(S1) (S2) (D1) (d2) step

operand style Applicable soft components

change

addres

s

S1 DINT constant D\R\W pointers customize

S2 BOOL X\Y\M\S pointers customize
non-

specified

D1 BOOL Y\M\S pointers customize

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 34 / 35

D2 DINT D\R\W pointers customize
non-

specified

· Operator Description

S1 PT Preset timings, units ms

S2 R reset

D1 Q output result

D2 ET Elapsed time, units ms – DINT

· Functional Description

When the timer instruction input energy flow changes from OFF to ON, the timer starts and the output Q is ON. When the

input energy flow changes from ON to OFF, the timer runs for the time specified by the PT parameter during the period

when the input energy flow remains OFF, and when the timer timing time reaches the time specified by the PT parameter,

Q changes to OFF.

When the input energy flow is OFF, Q is OFF and remains unchanged.

When the input energy flow is ON, the ET output value becomes 0. When the input energy flow changes from ON to OFF,

ET outputs the current timing time during the timer timing operation, and the ET value is maintained after the timer timing

time reaches the time specified by the PT parameter.

When the input energy flow is ON, if the reset input R changes from OFF to ON, the output Q becomes OFF; if R returns

to OFF, the output Q returns to ON.

When the input energy current is changed from ON to OFF, the DTOF timer is reset to 0 if the reset input R is changed

from OFF to ON, the output Q is changed to OFF, and ET is reset to 0. After the reset input R is changed to OFF, to resume

the timer counting, it is necessary to change the IN-input energy current from ON to OFF again.

· Parameter descriptions:

PT: set value range 0-2147483647ms (max. about 24 days); if PT set value is less than or equal to 0, according to 0 timing.

7.2.4 DTACR

ladder diagram:

Applicable

models
VC5

Affecting Flags

command list: DTACR (S1) (S2) (D1) (d2) step

operand style Applicable soft components
change

address

S1 DINT constant D\R\W pointers
customiza

tion

S2 BOOL X\Y\M\S pointers
customiza

tion

non-

specif

ied

 Suzhou Veichi Electric Co.,Ltd
Address: No.1000, Songjia Road, Guoxiang Street, Wuzhong Economic

and Technological Development Zone, Suzhou, Jiangsu, China
 35 / 35

D1 BOOL Y\M\S pointers
customiza

tion

D2 DINT D\R\W pointers
customiza

tion

non-

specif

ied

·Operator Description

S1 PT Preset Timing in ms

S2 R Reset

D1 Q Output Result

D2 ET elapsed time in ms - DINT

· Functional Description

When the input energy current of the timer command is ON, if the timer timing value does not reach the time specified by

the PT parameter, the timer keeps counting and the output Q is OFF, and when the timer timing time reaches the time

specified by the PT parameter, Q changes to ON.

During the period when the input energy current is ON and the timer is timing, if the input energy current becomes OFF,

the timer timing remains unchanged, and after the input energy current becomes ON again, the timer starts counting from

the current hold value, and after the time specified by the PT parameter is reached, Q becomes ON.

When the input energy current is ON, ET outputs the current timing value, and after the timing time reaches the time

specified in the PT parameter, the ET value is held.

When the input energy flow is OFF, ET remains unchanged.

If the timer changes the reset input R from OFF to ON during or after the timing is completed, the output Q becomes OFF

and ET is reset to zero.

To resume timer counting after the reset input, R, has changed to OFF, the IN-input energy flow needs to be changed from

ON to OFF again.

· Parameter Description:

PT: set value range 0-2147483647ms (max. about 24 days); if PT set value is less than or equal to 0, according to 0 timing.

	1. Variables
	1.1 Custom Variables
	1.2 Define Variables
	1.3 Defining Arrays
	1.4 Defining Structs
	1.5 How to use variables

	2. Binding of Variable Addresses
	2.1 Overview
	2.2 Variable Properties
	2.3 Array Variable Binding Soft Components
	2.4 Structure Variable Binding Soft Components

	3. Using Variables As Array Subscripts
	3.1 Rules of Use
	3.2 Programming Examples
	3.2.1 Example 1
	3.2.2 Example 2
	3.2.3 Example 3

	4. Pointer Type Variables
	4.1 Definition of Pointer Type Variables
	4.2 PT Pointer Address Operation

	5. Function Block FB
	5.1 New Function Block (FB)
	5.2 Function Block Programming
	5.2.1 Example - wrapping incremental count with FB
	5.2.2 Function block import and export
	5.2.3 Function block setting initial value

	6. Function Block FC
	6.1 New Function
	6.2 Function Block Programming
	6.2.1 Example - Wrapping addition functions with FC
	6.2.2 Function block import and export

	7. Timer Function Block
	7.1 Timer Command Parameters
	7.2 Command List
	7.2.1 DTPR
	7.2.2 DTON
	7.2.3 DTOF
	7.2.4 DTACR

